Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein
<p>Distributions of diameters for the obtained GNPs (TEM data). Syntheses of GNP1–GNP5 preparations are specified in <a href="#sec3dot2-ijms-24-16967" class="html-sec">Section 3.2</a>. Quantities of processed GNP images for each preparation were in the range of 60–90. Columns are histograms of particle size distribution; red curves are approximation of distributions by the Gaussian function.</p> "> Figure 2
<p>(<b>a</b>) Fluorescence values for preparations of carboxyfluorescein molecules that were not bound with the conjugate of antifluorescein IgG and GNPs (concentration of IgG in the conjugate solution—12.88 μg/mL, average diameter of GNPs—14 nm) (1) and for solutions of carboxyfluorescein in supernatants of the same GNPs (2). (<b>b</b>) Linear approximation for curve (2) in a range of carboxyfluorescein concentrations from 0 to 50 ng/mL.</p> "> Figure 3
<p>Concentrations of carboxyfluorescein bound by IgG–GNP conjugates versus concentration of added carboxyfluorescein. Dependences 1–5 align with the conjugates of GNPs with average diameters of 14, 18.5, 21, 31.5, and 35.5 nm, respectively. The experiments were implemented for the conjugate solutions with an OD of 5.0.</p> "> Figure 4
<p>Concentrations of aminofluorescein bound by IgG–GNP conjugate (average diameter of GNPs—21 nm) versus concentration of added aminofluorescein. The experiment was conducted for a conjugate solution with an OD of 5.0.</p> "> Figure 5
<p>Dependence of the concentrations of carboxyfluorescein bound by IgG–GNP conjugates on the initially added carboxyfluorescein for 18.5 nm (<b>a</b>) and 31.5 nm (<b>b</b>) GNP conjugates with different antibody contents in the conjugates. Dependences correspond to one monolayer (black) and half (red) and one-quarter of a monolayer (blue) of IgG.</p> "> Figure 6
<p>Conjugation of BSA with fluorescein isothiocyanate.</p> "> Figure 7
<p>Structures of 5-aminofluorescein (<b>a</b>) and 5-carboxyfluorescein (<b>b</b>).</p> "> Figure A1
<p>Electron micrographs for GNP1 (<b>a</b>), GNP2 (<b>b</b>), GNP3 (<b>c</b>), GNP4 (<b>d)</b>, and GNP5 (<b>e</b>) preparations.</p> "> Figure A1 Cont.
<p>Electron micrographs for GNP1 (<b>a</b>), GNP2 (<b>b</b>), GNP3 (<b>c</b>), GNP4 (<b>d)</b>, and GNP5 (<b>e</b>) preparations.</p> "> Figure A2
<p>Analysis using Student’s <span class="html-italic">t</span>-test for (<b>a</b>) degree of antibody binding with GNPs of different diameters under monolayer binding conditions (<a href="#ijms-24-16967-t003" class="html-table">Table 3</a>); (<b>b</b>) percentage of stored activity for antigen-binding sites of IgG–GNP conjugates with different diameters of GNPs (<a href="#ijms-24-16967-t004" class="html-table">Table 4</a>), and (<b>c</b>) percentage of stored activity for antigen-binding sites of IgG–GNP conjugates with different coverages of GNP surface (<a href="#ijms-24-16967-t007" class="html-table">Table 7</a>). Results of the pairwise comparisons of the closest variants in the series are indicated as ns for non-significant, * for significant at <span class="html-italic">p</span> < 0.05, and ** for significant at <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Obtaining and Characterization of Gold Nanoparticles Preparations
2.2. Preparation of Antibody–GNP Conjugates and Determination of Their Composition
2.3. Determination of Active Centers of the Immobilized Antibodies (Reaction with Carboxyfluorescein)
2.4. Determination of Active Centers of the Immobilized Antibodies (Reaction with Aminofluorescein)
2.5. Study of Antigen (Carboxyfluorescein)-Binding Properties of the Immobilized Antibodies with Varying Contents on the Nanoparticle Surfaces
3. Materials and Methods
3.1. Immunoreactants
3.2. Other Materials
3.3. Synthesis of GNPs
3.4. Transmission Electron Microscopy of GNPs
3.5. Spectroscopy of GNP Solutions
3.6. Obtaining Antibody–GNP Conjugates with Different Compositions
3.7. Measurements of Antibodies Bound to GNPs
3.8. Measurements of Active Antibodies on the GNP Surface
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Images of Gold Nanoparticles Obtained via Transmission Electron Microscopy
Appendix B. Statistical Comparison of Binding Characteristics for Series of Conjugates
References
- Zhu, G.; Yin, X.; Jin, D.; Zhang, B.; Gu, Y.; An, Y. Paper-based immunosensors: Current trends in the types and applied detection techniques. TrAC—Trends Anal. Chem. 2019, 111, 100–117. [Google Scholar] [CrossRef]
- Meng, X.; O’Hare, D.; Ladame, S. Surface immobilization strategies for the development of electrochemical nucleic acid sensors. Biosens. Bioelectron. 2023, 237, 115440. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: A review. Microchim. Acta 2016, 183, 1–19. [Google Scholar] [CrossRef]
- Iijima, M.; Kuroda, S. Scaffolds for oriented and close-packed immobilization of immunoglobulins. Biosens. Bioelectron. 2017, 89, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.; Rusling, J.F.; Dixit, C.K. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 2017, 116, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Welch, N.G.; Scoble, J.A.; Muir, B.W.; Pigram, P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases 2017, 12, 02D301. [Google Scholar] [CrossRef] [PubMed]
- Park, M. Orientation control of the molecular recognition layer for improved sensitivity: A review. BioChip J. 2019, 13, 82–94. [Google Scholar] [CrossRef]
- Gan, S.Y.; Tye, G.J.; Chew, A.L.; Ng, W.K.; Lai, N.S. Linker-mediated oriented antibody immobilisation strategies for a more efficient immunosensor and diagnostic applications: A review. Biosens. Bioelectron. 2023, 14, 100379. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, L.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef]
- Zhang, L.; Mazouzi, Y.; Salmain, M.; Liedberg, B.; Boujday, S. Antibody-gold nanoparticle bioconjugates for biosensors: Synthesis, characterization and selected applications. Biosens. Bioelectron. 2020, 165, 112370. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Song, S.; Park, S.; Joo, C. Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay. Biosens. Bioelectron. 2020, 152, 112015. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Sotnikov, D.V.; Zherdev, A.V.; Dzantiev, B.B. Development and application of a label-free fluorescence method for determining the composition of gold nanoparticle—protein conjugates. Intern. J. Mol. Sci. 2015, 16, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, G.; Tripathi, K.; Okyem, S.; Driskell, J.D. pH impacts the orientation of antibody adsorbed onto gold nanoparticles. Bioconjug. Chem. 2019, 30, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Filbrun, S.L.; Driskell, J.D. A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles. Analyst 2016, 141, 3851–3857. [Google Scholar] [CrossRef] [PubMed]
- Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Dzantiev, B.B. Retention of activity by antibodies immobilized on gold nanoparticles of different sizes: Fluorometric method of determination and comparative evaluation. Nanomaterials 2021, 11, 3117. [Google Scholar] [CrossRef] [PubMed]
- Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Dzantiev, B.B. Changes in antigen-binding ability of antibodies caused by immobilization on gold nanoparticles: A case study for monoclonal antibodies to fluorescein. Biointer. Res. Appl. Chem. 2023, 13, 550. [Google Scholar] [CrossRef]
- Rahman, M.; Laurent, S.; Tawil, N.; Yahia, L.; Mahmoudi, M. Protein-Nanoparticle Interactions; Springer Series in Biophysics, 15; Springer: Berlin/Heidelberg, Germany, 2013; pp. 21–25. [Google Scholar]
- Sotnikov, D.V.; Berlina, A.N.; Ivanov, V.S.; Zherdev, A.V.; Dzantiev, B.B. Adsorption of proteins on gold nanoparticles: One or more layers? Coll. Sur. B Biointerfaces 2019, 173, 557–563. [Google Scholar] [CrossRef]
- Mishra, A.; Das, P.K. Thermodynamics of multilayer protein adsorption on a gold nanoparticle surface. Phys. Chem. Chem. Phys. 2022, 24, 22464–22476. [Google Scholar] [CrossRef]
- Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Baldelli Bombelli, F.; Dawson, K.A. Physical—chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Amer. Chem. Soc. 2011, 133, 2525–2534. [Google Scholar] [CrossRef]
- Liu, W.; Rose, J.; Plantevin, S.; Auffan, M.; Bottero, J.Y.; Vidaud, C. Protein corona formation for nanomaterials and proteins of a similar size: Hard or soft corona? Nanoscale 2013, 5, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Docter, D.; Westmeier, D.; Markiewicz, M.; Stolte, S.; Knauer, S.K.; Stauber, R.H. The nanoparticle biomolecule corona: Lessons learned—challenge accepted? Chem. Soc. Rev. 2015, 44, 6094–6121. [Google Scholar] [CrossRef] [PubMed]
- Makaraviciute, A.; Ramanaviciene, A. Site-directed antibody immobilization techniques for immunosensors. Biosens. Bioelectron. 2013, 50, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, K.; Driskell, J.D. Quantifying bound and active antibodies conjugated to gold nanoparticles: A comprehensive and robust approach to evaluate immobilization chemistry. ACS Omega 2018, 3, 8253–8259. [Google Scholar] [CrossRef] [PubMed]
- Reader, P.P.; Olkhov, R.V.; Reeksting, S.; Lubben, A.; Hyde, C.J.; Shaw, A.M. A rapid and quantitative technique for assessing IgG monomeric purity, calibrated with the NISTmAb reference material. Anal. Bioanal. Chem. 2019, 411, 6487–6496. [Google Scholar] [CrossRef] [PubMed]
- Mays, D.C. Using the Quirk-Schofield diagram to explain environmental colloid dispersion phenomena. J. Nat. Res. Life Sci. Educ. 2007, 36, 45–52. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, D.; Salmain, M.; Liedberg, B.; Boujday, S. Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019, 204, 875–881. [Google Scholar] [CrossRef]
- Zvereva, E.A.; Byzova, N.A.; Sveshnikov, P.G.; Zherdev, A.V.; Dzantiev, B.B. Cut-off on demand: Adjustment of the threshold level of an immunochromatographic assay for chloramphenicol. Anal. Methods 2015, 7, 6378–6384. [Google Scholar] [CrossRef]
- Zhang, X.; Fishlock, S.; Sharpe, P.; McLaughlin, J. Development of colorimetric lateral flow assays with gold nanostructures for cystatin C detection. Sens. Act. Rep. 2022, 4, 100121. [Google Scholar] [CrossRef]
- Cavalera, S.; Pezzoni, G.; Grazioli, S.; Brocchi, E.; Baselli, S.; Lelli, D.; Colitti, B.; Serra, T.; Di Nardo, F.; Chiarello, M.; et al. Investigation of the “antigen hook effect” in lateral flow sandwich immunoassay: The case of lumpy skin disease virus detection. Biosensors 2022, 12, 739. [Google Scholar] [CrossRef]
- Wu, P.; Prachyathipsakul, T.; Huynh, U.; Qiu, J.; Jerry, D.J.; Thayumanavan, S. Optimizing conjugation chemistry, antibody conjugation site, and surface density in antibody-nanogel conjugates (ANCs) for cell-specific drug delivery. Bioconjug. Chem. 2023, 34, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Chatterjee, S.; Lou, X.Y.; Liang, F.; Yang, Y.W. Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord. Chem. Rev. 2022, 459, 214461. [Google Scholar] [CrossRef]
Code of GNP Preparation in Methods | GNP Diameter (TEM Data), nm | Ellipticity | Peak of Absorption Spectrum, nm | GNP Diameter (Spectral Data), nm |
---|---|---|---|---|
GNP1 | 13.9 ± 2.2 | 1.20 ± 0.14 | 517.5 ± 1.0 | 13 ± 1.3 |
GNP2 | 18.4 ± 0.7 | 1.12 ± 0.13 | 520.2 ± 0.2 | 18.5 ± 0.3 |
GNP3 | 21.3 ± 2.3 | 1.08 ± 0.04 | 521.1 ± 0.1 | 21 ± 0.2 |
GNP4 | 31.5 ± 5.3 | 1.19 ± 0.14 | 524.5 ± 0.1 | 30 ± 0.1 |
GNP5 | 35.5 ± 8.0 | 1.28 ± 0.41 | 526.7 ± 0.3 | 36 ± 0.4 |
GNP Diameter, nm | GNP, Individual Surface Area, nm2 | GNP in the Reaction Mixture, OD | GNP, Particles per mL | GNP, Total Surface Area per mL, nm2 | IgG for Monolayer Coverage, Molecules per mL | IgG in the Reaction Mixture, μg/mL |
---|---|---|---|---|---|---|
14 | 530 | 0.861 | 2.3 × 1012 | 12.1 × 1014 | 5.4 × 1013 | 13.42 |
18.5 | 1075 | 0.913 | 7.8 × 1011 | 8.3 × 1014 | 3.8 × 1013 | 9.44 |
21 | 1385 | 0.901 | 5.3 × 1011 | 7.3 × 1014 | 3.3 × 1013 | 8.32 |
31.5 | 2826 | 0.910 | 1.8 × 1011 | 5.0 × 1014 | 2.3 × 1013 | 5.82 |
35.5 | 4069 | 0.943 | 1.1 × 1011 | 4.5 × 1014 | 1.9 × 1013 | 4.85 |
GNP Diameter, nm | GNP, Particles per mL | IgG in the Reaction Mixture, μg/mL | Unbound IgG, μg/mL | Bound IgG per mL, μg | Average Degree of IgG Binding, % | Composition (IgG: GNP) of the Conjugates |
---|---|---|---|---|---|---|
14 | 2.3 × 1012 | 13.42 | 0.54 ± 0.06 | 12.88 ± 0.06 | 96 | 22:1 |
18.5 | 7.8 × 1011 | 9.44 | 2.56 ± 0.07 | 6.88 ± 0.07 | 73 | 35:1 |
21 | 5.3 × 1011 | 8.32 | 1.18 ± 0.04 | 7.14 ± 0.04 | 86 | 54:1 |
31.5 | 1.8 × 1011 | 5.82 | 0.49 ± 0.01 | 5.33 ± 0.01 | 92 | 119:1 |
35.5 | 1.1 × 1011 | 4.85 | 0.44 ± 0.03 | 4.41 ± 0.03 | 91 | 161:1 |
GNP Diameter, nm | GNP after Concentration, OD | GNP, Particles per mL | Concentration of Antigen-Binding Sites *, nM | Concentration of Bound Antigen, nM | Average Percentage of Antigen-Binding Sites with Stored Activity, % |
---|---|---|---|---|---|
14 | 5 | 1.33 × 1013 | 598 ± 36 | 62 ± 4.0 | 10 |
18.5 | 5 | 4.27 × 1012 | 301 ± 21 | 51 ± 0.7 | 17 |
21 | 5 | 2.94 × 1012 | 317 ± 13 | 41 ± 0.5 | 13 |
31.5 | 5 | 9.89 × 1011 | 235 ± 2 | 20 ± 0.8 | 9 |
35.5 | 5 | 5.83 × 1011 | 186 ± 6 | 11 ± 0.3 | 6 |
GNP Diameter, nm | GNP after Concentration, OD | GNP, Particles per mL | Concentration of Antigen-Binding Sites, nM | Concentration of Bound Antigen, nM | Average Percentage of Antigen-Binding Sites with Stored Activity, % |
---|---|---|---|---|---|
21 | 5 | 2.94 × 1012 | 333 ± 25 | 90 ± 4 | 27 |
Diameter of GNP, nm | Degree of Coverage | Concentration of Added IgG, μg/mL | Concentration of Non-Bound IgG, μg/mL | Concentration of Bound IgG, μg/mL | Average Percentage of IgG Binding, % |
---|---|---|---|---|---|
18.5 | Full monolayer | 9.44 | 2.56 ± 0.07 | 6.88 ± 0.07 | 73 |
18.5 | Half of monolayer | 4.72 | 0.44 ± 0.19 | 4.27 ± 0.19 | 91 |
18.5 | Quarter of monolayer | 2.36 | 0.33 ± 0.14 | 2.03 ± 0.14 | 86 |
31.5 | Full monolayer | 5.82 | 0.49 ± 0.08 | 5.33 ± 0.08 | 92 |
31.5 | Half of monolayer | 2.91 | 0.56 ± 0.10 | 2.34 ± 0.10 | 81 |
31.5 | Quarter of monolayer | 1.45 | 0.27 ± 0.19 | 1.19 ± 0.19 | 82 |
GNP Diameter, nm | Degree of Coverage | GNP after Concentration, OD | GNP, Particles per mL | Concentration of Antigen-Binding Sites, nM | Concentration of Bound Antigen, nM | Average Percentage of Antigen-Binding Sites with Stored Activity, % |
---|---|---|---|---|---|---|
18.5 | Full monolayer | 5 | 7.8 × 1011 | 301 ± 3 | 54 ± 1.4 | 17 |
18.5 | Half of monolayer | 5 | 7.8 × 1011 | 187 ± 8 | 29 ± 1.2 | 16 |
18.5 | Quarter of monolayer | 5 | 7.8 × 1011 | 89 ± 6 | 11 ± 1.8 | 10 |
31.5 | Full monolayer | 5 | 1.8 × 1011 | 235 ± 4 | 24 ± 1.8 | 10 |
31.5 | Half of monolayer | 5 | 1.8 × 1011 | 103 ± 4 | 11 ± 0.3 | 10 |
31.5 | Quarter of monolayer | 5 | 1.8 × 1011 | 52 ± 8 | 6 ± 0.4 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sotnikov, D.V.; Byzova, N.A.; Zherdev, A.V.; Dzantiev, B.B. Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein. Int. J. Mol. Sci. 2023, 24, 16967. https://doi.org/10.3390/ijms242316967
Sotnikov DV, Byzova NA, Zherdev AV, Dzantiev BB. Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein. International Journal of Molecular Sciences. 2023; 24(23):16967. https://doi.org/10.3390/ijms242316967
Chicago/Turabian StyleSotnikov, Dmitriy V., Nadezhda A. Byzova, Anatoly V. Zherdev, and Boris B. Dzantiev. 2023. "Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein" International Journal of Molecular Sciences 24, no. 23: 16967. https://doi.org/10.3390/ijms242316967
APA StyleSotnikov, D. V., Byzova, N. A., Zherdev, A. V., & Dzantiev, B. B. (2023). Ability of Antibodies Immobilized on Gold Nanoparticles to Bind Small Antigen Fluorescein. International Journal of Molecular Sciences, 24(23), 16967. https://doi.org/10.3390/ijms242316967