Abstract
Bayesian optimization is an efficient numerical tool. We review approaches to improve its scalability and to handle noisy inputs, and we demonstrate applications in pho- tonics design optimization and in control of quantum experiments.
© 2021 The Author(s)
PDF ArticleMore Like This
S. Paesani, A. A. Gentile, R. Santagati, J. Wang, N. Wiebe, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, M. G. Tanner, C. M. Natarajan, R. H. Hadfield, D. Tew, J.L. O’Brien, and M. G. Thompson
FTu3G.5 Frontiers in Optics (FiO) 2016
Sebastián C. Carrasco, Michael H. Goerz, Vladan Vuletić, and Vladimir S. Malinovsky
Th3A.3 Quantum Information and Measurement (QIM) 2021
Zhizhen Zhong, Manya Ghobadi, Maximilian Balandat, Sanjeevkumar Katti, Abbas Kazerouni, Jonathan Leach, Mark McKillop, and Ying Zhang
F3B.1 Optical Fiber Communication Conference (OFC) 2021