Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Multinucleon excitations in neutrino–nucleus scattering: connecting different microscopic models for the correlations

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The problem of nucleon–nucleon correlations and meson exchange currents has been vividly debated in connection with the neutrino–nucleus cross sections. In this work we focus on nucleon–nucleon correlations by discussing a formal correspondence between the approaches based on independent particles and the ab initio approaches involving correlated wave functions. We use a general technique based on unitary transformation mapping the Fermion operators relative to bare nucleons into quasi-particle operators relative to dressed nucleons. We derive formulas for spectral functions, response functions, momentum distribution, separation energy, general enough to be applied with any kind of effective nucleon–nucleon interaction. We establish the relation between the non-energy-weighted sum rule and the Fermi sea depopulation. With our tools we evaluate whether approaches based on effective interactions are compatible with the expected amount of correlations coming from ab initio calculations. For this purpose we use as a test the Fermi sea depopulation and the value of the kinetic energy per nucleon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We remind that in the case of Lyon, Valencia and Ghent groups long-range nuclear correlations are also taken into account, via the Random Phase Approximation (RPA).

  2. The \( \sigma \tau \) operators are replaced by the usual 1/2 to 3/2 transition operators ST in the case of coupling to the \(\varDelta \).

References

  1. H.A. Bethe, Annu. Rev. Nucl. Sci. 21, 93 (1971)

    Article  ADS  Google Scholar 

  2. D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)

    Article  ADS  Google Scholar 

  3. T. Katori, AIP Conf. Proc. 1189, 139 (2009)

    Article  ADS  Google Scholar 

  4. A. Aguilar-Arevado et al., MiniBoone Collaboration, Phys. Rev. D 81, 092005 (2010)

  5. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 80, 065501 (2009)

    Article  ADS  Google Scholar 

  6. M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 81, 045502 (2010)

    Article  ADS  Google Scholar 

  7. M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 84, 055502 (2011)

    Article  ADS  Google Scholar 

  8. M. Martini, M. Ericson, Phys. Rev. C 87, 065501 (2013)

    Article  ADS  Google Scholar 

  9. M. Martini, M. Ericson, Phys. Rev. C 90, 025501 (2014)

    Article  ADS  Google Scholar 

  10. M. Ericson, M. Martini, Phys. Rev. C 91, 035501 (2015)

    Article  ADS  Google Scholar 

  11. M. Martini, N. Jachowicz, M. Ericson, V. Pandey, T. Van Cuyck, N. Van Dessel, Phys. Rev. C 94(1), 015501 (2016)

    Article  ADS  Google Scholar 

  12. J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Rev. C 83, 045501 (2011)

    Article  ADS  Google Scholar 

  13. J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Lett. B 707, 72 (2012)

    Article  ADS  Google Scholar 

  14. J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Lett. B 721, 90 (2013)

    Article  ADS  Google Scholar 

  15. R. Gran, J. Nieves, F. Sanchez, M.J. Vicente Vacas, Phys. Rev. D 88(11), 113007 (2013)

    Article  ADS  Google Scholar 

  16. J.E. Sobczyk, J. Nieves, F. Sánchez, Phys. Rev. C 102(2), 024601 (2020)

    Article  ADS  Google Scholar 

  17. B. Bourguille, J. Nieves, F. Sánchez, JHEP 04, 004 (2021)

    Article  ADS  Google Scholar 

  18. V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini, Phys. Rev. C 92(2), 024606 (2015)

    Article  ADS  Google Scholar 

  19. T. Van Cuyck, N. Jachowicz, R. González-Jiménez, M. Martini, V. Pandey, J. Ryckebusch, N. Van Dessel, Phys. Rev. C 94(2), 024611 (2016)

    Article  ADS  Google Scholar 

  20. T. Van Cuyck, N. Jachowicz, R. González-Jiménez, J. Ryckebusch, N. Van Dessel, Phys. Rev. C 95(5), 054611 (2017)

    Article  ADS  Google Scholar 

  21. E. Berrueta Martinez, A. Mariano, C. Barbero, Phys. Rev. C 103(1), 015503 (2021)

    Article  ADS  Google Scholar 

  22. W.M. Alberico, M. Ericson, A. Molinari, Ann. Phys. 154, 356 (1984)

    Article  ADS  Google Scholar 

  23. E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631–652 (1987)

    Article  ADS  Google Scholar 

  24. A. Gil, J. Nieves, E. Oset, Nucl. Phys. A 627, 543–598 (1997)

    Article  ADS  Google Scholar 

  25. J. Ryckebusch, M. Vanderhaeghen, L. Machenil, M. Waroquier, Nucl. Phys. A 568, 828–854 (1994)

    Article  ADS  Google Scholar 

  26. J. Ryckebusch, V. Van der Sluys, K. Heyde, H. Holvoet, W. Van Nespen, M. Waroquier, M. Vanderhaeghen, Nucl. Phys. A 624, 581–622 (1997)

    Article  ADS  Google Scholar 

  27. A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. Lett. 112, 182502 (2014)

    Article  ADS  Google Scholar 

  28. A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. C 91, 062501 (2015)

    Article  ADS  Google Scholar 

  29. A. Lovato, S. Gandolfi, J. Carlson, E. Lusk, S.C. Pieper, R. Schiavilla, Phys. Rev. C 97(2), 022502 (2018)

    Article  ADS  Google Scholar 

  30. A. Lovato, J. Carlson, S. Gandolfi, N. Rocco, R. Schiavilla, Phys. Rev. X 10(3), 031068 (2020)

    Google Scholar 

  31. O. Benhar, N. Farina, H. Nakamura, M. Sakuda, R. Seki, Phys. Rev. D 72, 053005 (2005)

    Article  ADS  Google Scholar 

  32. O. Benhar, A. Lovato, N. Rocco, Phys. Rev. C 92, 024602 (2015)

    Article  ADS  Google Scholar 

  33. N. Rocco, A. Lovato, O. Benhar, Phys. Rev. Lett. 116(19), 192501 (2016)

    Article  ADS  Google Scholar 

  34. N. Rocco, C. Barbieri, O. Benhar, A. De Pace, A. Lovato, Phys. Rev. C 99(2), 025502 (2019)

    Article  ADS  Google Scholar 

  35. C. Barbieri, N. Rocco, V. Somà, Phys. Rev. C 100(6), 062501 (2019)

    Article  ADS  Google Scholar 

  36. J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, I. Sick, Phys. Rev. C 71, 015501 (2005)

    Article  ADS  Google Scholar 

  37. R. Gonzaléz-Jiménez, G.D. Megias, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, Phys. Rev. C 90(3), 035501 (2014)

    Article  ADS  Google Scholar 

  38. I. Ruiz Simo, C. Albertus, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, Phys. Rev. D 90(3), 033012 (2014)

    Article  ADS  Google Scholar 

  39. I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, A. De Pace, J.A. Caballero, T.W. Donnelly, J. Phys. G 44(6), 065105 (2017)

    Article  ADS  Google Scholar 

  40. G.D. Megias, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, I. Ruiz Simo, Phys. Rev. D 94(9), 093004 (2016)

    Article  ADS  Google Scholar 

  41. I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, A. De Pace, J.A. Caballero, G.D. Megias, T.W. Donnelly, Phys. Lett. B 762, 124–130 (2016)

    Article  ADS  Google Scholar 

  42. I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, J.A. Caballero, G.D. Megias, T.W. Donnelly, Phys. Lett. B 770, 193–199 (2017)

    Article  ADS  Google Scholar 

  43. J.E. Amaro, M.B. Barbaro, J.A. Caballero, A. De Pace, T.W. Donnelly, G.D. Megias, I. Ruiz Simo, Phys. Rev. C 95(6), 065502 (2017)

    Article  ADS  Google Scholar 

  44. I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, J.A. Caballero, G.D. Megias, T.W. Donnelly, Ann. Phys. 388, 323–349 (2018)

    Article  ADS  Google Scholar 

  45. G.D. Megias, M.B. Barbaro, J.A. Caballero, J.E. Amaro, T.W. Donnelly, I. Ruiz Simo, J.W. Van Orden, J. Phys. G 46(1), 015104 (2019)

    Article  ADS  Google Scholar 

  46. T. Leitner, O. Buss, L. Alvarez-Ruso, U. Mosel, Phys. Rev. C 79, 034601 (2009)

    Article  ADS  Google Scholar 

  47. K. Gallmeister, U. Mosel, J. Weil, Phys. Rev. C 94(3), 035502 (2016)

    Article  ADS  Google Scholar 

  48. T. Katori, M. Martini, J. Phys. G 45(1), 013001 (2018)

    Article  ADS  Google Scholar 

  49. K. Abe et al. [T2K], Phys. Rev. D 101(11), 112001 (2020)

  50. K. Abe et al. [T2K], Nature 580(7803), 339–344 (2020) [Erratum: Nature 583(7814), E16 (2020)]

  51. M.A. Acero et al. [NOvA], Phys. Rev. Lett. 123(15), 151803 (2019)

  52. K. Abe et al. [Hyper-Kamiokande Proto-], PTEP 2015, 053C02 (2015)

  53. R. Acciarri et al. [DUNE], arXiv:1601.05471 [physics.ins-det]

  54. C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias et al., Nucl. Instrum. Meth. A 614, 87–104 (2010)

    Article  ADS  Google Scholar 

  55. Y. Hayato, Acta Phys. Polon. B 40, 2477–2489 (2009)

    ADS  Google Scholar 

  56. T. Golan, C. Juszczak, J.T. Sobczyk, Phys. Rev. C 86, 015505 (2012)

    Article  ADS  Google Scholar 

  57. J. Nieves, J.E. Sobczyk, Ann. Phys. 383, 455–496 (2017)

    Article  ADS  Google Scholar 

  58. J.E. Sobczyk, Phys. Rev. C 96(4), 045501 (2017)

    Article  ADS  Google Scholar 

  59. D. Berardo, M.B. Barbaro, R. Cenni, T.W. Donnelly, A. Molinari, Phys. Rev. C 84, 054315 (2011)

    Article  ADS  Google Scholar 

  60. R.G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984)

    Article  ADS  Google Scholar 

  61. J. Ashman et al., European Muon Collaboration, Phys. Lett. B 202, 1004 (1988)

  62. P. Schuck et al., Prog. Part. Nucl. Phys. 22, 181 (1989)

    Article  ADS  Google Scholar 

  63. S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. B 158, 485 (1985)

    Article  ADS  Google Scholar 

  64. G.L. Li, K.F. Liu, G.E. Brown, Phys. Lett. B 213, 531 (1988)

    Article  ADS  Google Scholar 

  65. M. Beiner, H. Flocard, Nguyen Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975)

    Article  ADS  Google Scholar 

  66. J. Meyer, private communication

  67. G. Chanfray, Nucl. Phys. A 532, 249c–254c (1991)

    Article  ADS  Google Scholar 

  68. M. Ericson, PANIC 87 (North-Holland Publ.) 416c

  69. C. Ciofi degli Atti, S. Iautt, Phys. Lett. B 225, 215 (1989)

    Article  ADS  Google Scholar 

  70. C. Ciofi degli Atti, S.I. Iuti, Phys. Rev. C 41, 1100 (1990)

    Article  ADS  Google Scholar 

  71. C. Cioffi degli Atti, Nucl. Phys. A 532, 241 (1991)

    Article  ADS  Google Scholar 

  72. B. Desplanques, Ann. Phys. 15, 159 (1990)

    Google Scholar 

  73. B. Desplanques, Few-body-system, in Proceedings of the 5th International Symposium, ed. by E. Truhlik and R. Mach, 260 (1992)

  74. S. Fantoni, V.R. Pandharipande, Nucl. Phys. A 427, 473492 (1984)

    Article  Google Scholar 

  75. J. Goldstone, Proc. R. Soc. A 239, 267 (1956)

    ADS  MathSciNet  Google Scholar 

  76. G. Chanfray, M. Ericson, Phys. Rev. C 75, 015206 (2007)

    Article  ADS  Google Scholar 

  77. G. Chanfray, M. Ericson, Phys. Rev. C 83, 015204 (2011)

    Article  ADS  Google Scholar 

  78. E. Massot, G. Chanfray, Phys. Rev. C 78, 015204 (2009)

    Article  ADS  Google Scholar 

  79. E. Massot, G. Chanfray, Phys. Rev. C 80, 015202 (2009)

    Article  ADS  Google Scholar 

  80. E. Massot, J. Margueron, G. Chanfray, EPL 97(3), 39002 (2012)

    Article  ADS  Google Scholar 

  81. J. Hu, Y. Ogawa, H. Toki, A. Hosaka, H. Shen, Phys. Rev. C 79, 024305 (2009)

    Article  ADS  Google Scholar 

  82. J. Hu, H. Toki, W. Wen, H. Shen, Eur. Phys. J. A43, 323 (2010)

    Article  ADS  Google Scholar 

  83. J. Hu, H. Toki, H. Shen, J. Phys. G Nucl. Part. Phys. 38, 085105 (2011)

    Article  ADS  Google Scholar 

  84. O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 505, 267 (1989)

    Article  ADS  Google Scholar 

  85. O. Benhar, A. Fabrocini, S. Fantoni, Phys. Rev. C 41, R24 (1990)

    Article  ADS  Google Scholar 

  86. O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 550, 250 (1992)

    Article  ADS  Google Scholar 

  87. O. Benhar, S. Fantoni, Nuclear Matter Theory (Taylor and Francis, London, 2020)

    Book  MATH  Google Scholar 

  88. A. Ramos, W.H. Dickhoff, A. Polls, Phys. Rev. C 43, 2239 (1991)

    Article  ADS  Google Scholar 

  89. M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)

  90. D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004)

    Article  ADS  Google Scholar 

  91. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, Boston, 1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

The one-body Green’s function and the mass operator

In this appendix we remind some textbook formulas (see for example Ref. [91]) of the many-body theory.

The one-body Green’s function is defined as :

$$\begin{aligned} G_{k',k}(t)=\left\langle 0\left| -i\,\mathcal{{T}}\left( a_{k'}(t) , a^\dagger _{k}(0) \right) \right| 0 \right\rangle =\int \frac{\mathrm{d}\varOmega }{2\pi } e^{-i\varOmega t} G_{k',k}(\varOmega ). \end{aligned}$$
(61)

Its Lehmann representation can be written in a dispersive form as :

$$\begin{aligned} G_{k',k}(\varOmega ) =\int \mathrm{d}E\left( \frac{S^p_{k',k}(E)}{\varOmega -E+i\eta }+\frac{S^h_{k,k'}(E)}{\varOmega -E-i\eta }\right) \end{aligned}$$
(62)

and is entirely known once the hole and particle spectral functions, defined as

$$\begin{aligned} S^h_{k,k'}(E)&=\sum _n \langle 0|a^\dagger _k|n \rangle \langle n|a_{k'}|0 \rangle \, \delta \left( E+E_n^{A-1}-E_0^A\right) \nonumber \\ S^p_{k',k}(E)&=\sum _n \langle 0|a_{k'}|n\rangle \langle n|a^\dagger _k|0 \rangle \, \delta \left( E-E_n^{A+1}+E_0^A\right) , \end{aligned}$$
(63)

are known.

The single particle propagator in nuclear matter is obtained as the diagonal component one-body Green’s function:

$$\begin{aligned} G(E,\mathbf{k})= & {} \int \mathrm{d}t\, e^{iEt}\left\langle 0\left| -iT\left( a_\mathbf{k}(t), a^\dagger _\mathbf{k}(0)\right) \right| 0\right\rangle \nonumber \\= & {} \left( E-(k^2/2M)-M(E,\mathbf{k})\right) ^{-1}, \end{aligned}$$
(64)

where \(M(E,\mathbf{k})\) is the mass operator.

The real and imaginary part of the nuclear matter single particle propagator can be expressed in terms of the spectral functions as:

$$\begin{aligned} Re\, G(E,\mathbf{k})= & {} \int \mathrm{d}E'\,\frac{S^p(E',\mathbf{k})+S^h(E',\mathbf{k})}{E-E'} \end{aligned}$$
(65)
$$\begin{aligned} Im\, G(E,\mathbf{k})= & {} -\pi \left( S^p(E,\mathbf{k})-S^h(E,\mathbf{k})\right) . \end{aligned}$$
(66)

The imaginary part of the mass operator \(M(E,\mathbf{k})\) (i.e. the optical potential), assuming that it is always smaller than the real part (see Ref. [62]) , is related to the single particle propagator and to the spectral functions by the following relations :

$$\begin{aligned} -\frac{1}{\pi } Im\, G(E,\mathbf{k})\simeq -\frac{1}{\pi }\frac{Im\, M(E,\mathbf{k})}{(E-\epsilon _k)^2} =S^p(E,\mathbf{k})-S^h(E,\mathbf{k}), \end{aligned}$$
(67)

where \(\epsilon _k\) is the Hartree-Fock single particle energy. Inserting in Eq. (67) the expression of the spectral functions given by Eqs. (25), (24), we obtain the expression of Eq. (26) for the imaginary part of the mass operator.

Response function in the factorization approximation

In this appendix we explicitly derive the expression of the response function in the factorization approximation. The response function, already defined in Eq. (3), can be explicitly written as:

$$\begin{aligned} R(\omega ,\mathbf{q})= & {} \sum _{n}\,\left| \left\langle n \left| \sum _{j=1}^A\,\mathcal{{O}}(j)\, e^{i\mathbf{q}\cdot \mathbf{x}_j} \right| 0 \right\rangle \right| ^2\,\delta (\omega -E_n + E_0)\nonumber \\= & {} \sum _{n}\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2 \rangle \nonumber \\&\times \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1\rangle \langle 0|a^\dagger _{k'_1}a_{k'_2}|n\rangle \langle n|a^\dagger _{k_2} a_{k_1}|0 \rangle \nonumber \\\equiv & {} \left( -\frac{1}{\pi }\right) Im \varPi (\omega ,\mathbf{q}). \end{aligned}$$
(68)

The response function is the imaginary part of the polarization propagator \(\varPi (\omega ,\mathbf{q})\), which can be expressed as:

$$\begin{aligned} \varPi (\omega ,\mathbf{q})= & {} \int \mathrm{d}t\, e^{i\omega t}\,\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2\rangle \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1 \rangle \,\nonumber \\&\times \left\langle 0\left| -i\,\mathcal{{T}}\left( a^\dagger _{k'_1}(t)a_{k'_2}(t) , a^\dagger _{k_2}(0) a_{k_1}(0)\right) \right| 0 \right\rangle \nonumber \\\approx & {} \int i\mathrm{d}t\, e^{i\omega t}\,\sum _{k'_1, k'_2,k_1,k_2}\langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2\rangle \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1 \rangle \nonumber \\&\times \langle 0|-i\,\mathcal{{T}}\left( a^\dagger _{k'_1}(t) , a_{k_1}(0)\right) |0 \rangle \nonumber \\&\times \langle 0|-i\,\mathcal{{T}}\left( a_{k'_2}(t) , a^\dagger _{k_2}(0) \right) |0 \rangle \nonumber \\= & {} \int i\mathrm{d}t\, e^{i\omega t}\,\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2 \rangle \nonumber \\&\langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1 \rangle (-1) G_{k_1,k'_1}(-t) G_{k'_2,k_2}(t),\nonumber \\ \end{aligned}$$
(69)

where we have applied the factorization scheme which consists to approximate the two-body Green’s function as a product of two one-body Green’s functions. Using the Lehmann representation, given in Eq. (62), for the one-body Green’s function, one obtains for the polarization propagator:

$$\begin{aligned}&\varPi (\omega ,\mathbf{q}) =\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2 \rangle \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1 \rangle \nonumber \\&\quad \times (-i)\int \frac{d\varOmega _1}{2\pi }\frac{d\varOmega _2}{2\pi } \,2\pi \,\delta (\omega -\varOmega _2+\varOmega _1)\, G_{k_1,k'_1}(\varOmega _1) G_{k'_2,k_2}(\varOmega _2)\nonumber \\&=\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2\rangle \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1\rangle \nonumber \\&\quad \times \int \frac{dE_1}{2\pi }\frac{dE_2}{2\pi }\left( \frac{S^h_{k_1,k'_1}(E_1)S^p_{k'_2,k_2}(E_2)}{\omega -E_2+E_1+ i\eta }\nonumber \right. \\&\quad \left. -\frac{S^p_{k_1,k'_1}(E_1)S^h_{k'_2,k_2}(E_2)}{\omega -E_2+E_1- i\eta }\right) . \end{aligned}$$
(70)

The response function is obtained by taking the imaginary part (for positive \(\omega \)) of Eq. (70), leading to:

$$\begin{aligned}&R(\omega ,\mathbf{q})=\sum _{k'_1, k'_2,k_1,k_2} \langle k'_1|\mathcal{{O}}^\dagger e^{-i\mathbf{q}\cdot \mathbf{x}}|k'_2\rangle \langle k_2|\mathcal{{O}} e^{i\mathbf{q}\cdot \mathbf{x}}|k_1 \rangle \nonumber \\&\quad \times \int _{-\infty }^{\varepsilon _F} dE_1 \int _{\varepsilon _F}^{\infty } dE_2\, S^h_{k_1,k'_1}(E_1)\,S^p_{k'_2,k_2}(E_2)\,\delta (\omega -E_2+E_1). \end{aligned}$$
(71)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chanfray, G., Ericson, M. & Martini, M. Multinucleon excitations in neutrino–nucleus scattering: connecting different microscopic models for the correlations. Eur. Phys. J. Spec. Top. 230, 4357–4372 (2021). https://doi.org/10.1140/epjs/s11734-021-00291-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00291-x

Navigation