Abstract
The problem of nucleon–nucleon correlations and meson exchange currents has been vividly debated in connection with the neutrino–nucleus cross sections. In this work we focus on nucleon–nucleon correlations by discussing a formal correspondence between the approaches based on independent particles and the ab initio approaches involving correlated wave functions. We use a general technique based on unitary transformation mapping the Fermion operators relative to bare nucleons into quasi-particle operators relative to dressed nucleons. We derive formulas for spectral functions, response functions, momentum distribution, separation energy, general enough to be applied with any kind of effective nucleon–nucleon interaction. We establish the relation between the non-energy-weighted sum rule and the Fermi sea depopulation. With our tools we evaluate whether approaches based on effective interactions are compatible with the expected amount of correlations coming from ab initio calculations. For this purpose we use as a test the Fermi sea depopulation and the value of the kinetic energy per nucleon.
Similar content being viewed by others
Notes
We remind that in the case of Lyon, Valencia and Ghent groups long-range nuclear correlations are also taken into account, via the Random Phase Approximation (RPA).
The \( \sigma \tau \) operators are replaced by the usual 1/2 to 3/2 transition operators ST in the case of coupling to the \(\varDelta \).
References
H.A. Bethe, Annu. Rev. Nucl. Sci. 21, 93 (1971)
D. Vautherin, D.M. Brink, Phys. Rev. C 5, 626 (1972)
T. Katori, AIP Conf. Proc. 1189, 139 (2009)
A. Aguilar-Arevado et al., MiniBoone Collaboration, Phys. Rev. D 81, 092005 (2010)
M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 80, 065501 (2009)
M. Martini, M. Ericson, G. Chanfray, J. Marteau, Phys. Rev. C 81, 045502 (2010)
M. Martini, M. Ericson, G. Chanfray, Phys. Rev. C 84, 055502 (2011)
M. Martini, M. Ericson, Phys. Rev. C 87, 065501 (2013)
M. Martini, M. Ericson, Phys. Rev. C 90, 025501 (2014)
M. Ericson, M. Martini, Phys. Rev. C 91, 035501 (2015)
M. Martini, N. Jachowicz, M. Ericson, V. Pandey, T. Van Cuyck, N. Van Dessel, Phys. Rev. C 94(1), 015501 (2016)
J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Rev. C 83, 045501 (2011)
J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Lett. B 707, 72 (2012)
J. Nieves, T. Ruiz Simo, M. Vicente Vacas, Phys. Lett. B 721, 90 (2013)
R. Gran, J. Nieves, F. Sanchez, M.J. Vicente Vacas, Phys. Rev. D 88(11), 113007 (2013)
J.E. Sobczyk, J. Nieves, F. Sánchez, Phys. Rev. C 102(2), 024601 (2020)
B. Bourguille, J. Nieves, F. Sánchez, JHEP 04, 004 (2021)
V. Pandey, N. Jachowicz, T. Van Cuyck, J. Ryckebusch, M. Martini, Phys. Rev. C 92(2), 024606 (2015)
T. Van Cuyck, N. Jachowicz, R. González-Jiménez, M. Martini, V. Pandey, J. Ryckebusch, N. Van Dessel, Phys. Rev. C 94(2), 024611 (2016)
T. Van Cuyck, N. Jachowicz, R. González-Jiménez, J. Ryckebusch, N. Van Dessel, Phys. Rev. C 95(5), 054611 (2017)
E. Berrueta Martinez, A. Mariano, C. Barbero, Phys. Rev. C 103(1), 015503 (2021)
W.M. Alberico, M. Ericson, A. Molinari, Ann. Phys. 154, 356 (1984)
E. Oset, L.L. Salcedo, Nucl. Phys. A 468, 631–652 (1987)
A. Gil, J. Nieves, E. Oset, Nucl. Phys. A 627, 543–598 (1997)
J. Ryckebusch, M. Vanderhaeghen, L. Machenil, M. Waroquier, Nucl. Phys. A 568, 828–854 (1994)
J. Ryckebusch, V. Van der Sluys, K. Heyde, H. Holvoet, W. Van Nespen, M. Waroquier, M. Vanderhaeghen, Nucl. Phys. A 624, 581–622 (1997)
A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. Lett. 112, 182502 (2014)
A. Lovato, S. Gandolfi, J. Carlson, S.C. Pieper, R. Schiavilla, Phys. Rev. C 91, 062501 (2015)
A. Lovato, S. Gandolfi, J. Carlson, E. Lusk, S.C. Pieper, R. Schiavilla, Phys. Rev. C 97(2), 022502 (2018)
A. Lovato, J. Carlson, S. Gandolfi, N. Rocco, R. Schiavilla, Phys. Rev. X 10(3), 031068 (2020)
O. Benhar, N. Farina, H. Nakamura, M. Sakuda, R. Seki, Phys. Rev. D 72, 053005 (2005)
O. Benhar, A. Lovato, N. Rocco, Phys. Rev. C 92, 024602 (2015)
N. Rocco, A. Lovato, O. Benhar, Phys. Rev. Lett. 116(19), 192501 (2016)
N. Rocco, C. Barbieri, O. Benhar, A. De Pace, A. Lovato, Phys. Rev. C 99(2), 025502 (2019)
C. Barbieri, N. Rocco, V. Somà, Phys. Rev. C 100(6), 062501 (2019)
J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, A. Molinari, I. Sick, Phys. Rev. C 71, 015501 (2005)
R. Gonzaléz-Jiménez, G.D. Megias, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, Phys. Rev. C 90(3), 035501 (2014)
I. Ruiz Simo, C. Albertus, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, Phys. Rev. D 90(3), 033012 (2014)
I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, A. De Pace, J.A. Caballero, T.W. Donnelly, J. Phys. G 44(6), 065105 (2017)
G.D. Megias, J.E. Amaro, M.B. Barbaro, J.A. Caballero, T.W. Donnelly, I. Ruiz Simo, Phys. Rev. D 94(9), 093004 (2016)
I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, A. De Pace, J.A. Caballero, G.D. Megias, T.W. Donnelly, Phys. Lett. B 762, 124–130 (2016)
I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, J.A. Caballero, G.D. Megias, T.W. Donnelly, Phys. Lett. B 770, 193–199 (2017)
J.E. Amaro, M.B. Barbaro, J.A. Caballero, A. De Pace, T.W. Donnelly, G.D. Megias, I. Ruiz Simo, Phys. Rev. C 95(6), 065502 (2017)
I. Ruiz Simo, J.E. Amaro, M.B. Barbaro, J.A. Caballero, G.D. Megias, T.W. Donnelly, Ann. Phys. 388, 323–349 (2018)
G.D. Megias, M.B. Barbaro, J.A. Caballero, J.E. Amaro, T.W. Donnelly, I. Ruiz Simo, J.W. Van Orden, J. Phys. G 46(1), 015104 (2019)
T. Leitner, O. Buss, L. Alvarez-Ruso, U. Mosel, Phys. Rev. C 79, 034601 (2009)
K. Gallmeister, U. Mosel, J. Weil, Phys. Rev. C 94(3), 035502 (2016)
T. Katori, M. Martini, J. Phys. G 45(1), 013001 (2018)
K. Abe et al. [T2K], Phys. Rev. D 101(11), 112001 (2020)
K. Abe et al. [T2K], Nature 580(7803), 339–344 (2020) [Erratum: Nature 583(7814), E16 (2020)]
M.A. Acero et al. [NOvA], Phys. Rev. Lett. 123(15), 151803 (2019)
K. Abe et al. [Hyper-Kamiokande Proto-], PTEP 2015, 053C02 (2015)
R. Acciarri et al. [DUNE], arXiv:1601.05471 [physics.ins-det]
C. Andreopoulos, A. Bell, D. Bhattacharya, F. Cavanna, J. Dobson, S. Dytman, H. Gallagher, P. Guzowski, R. Hatcher, P. Kehayias et al., Nucl. Instrum. Meth. A 614, 87–104 (2010)
Y. Hayato, Acta Phys. Polon. B 40, 2477–2489 (2009)
T. Golan, C. Juszczak, J.T. Sobczyk, Phys. Rev. C 86, 015505 (2012)
J. Nieves, J.E. Sobczyk, Ann. Phys. 383, 455–496 (2017)
J.E. Sobczyk, Phys. Rev. C 96(4), 045501 (2017)
D. Berardo, M.B. Barbaro, R. Cenni, T.W. Donnelly, A. Molinari, Phys. Rev. C 84, 054315 (2011)
R.G. Arnold et al., Phys. Rev. Lett. 52, 727 (1984)
J. Ashman et al., European Muon Collaboration, Phys. Lett. B 202, 1004 (1988)
P. Schuck et al., Prog. Part. Nucl. Phys. 22, 181 (1989)
S.V. Akulinichev, S.A. Kulagin, G.M. Vagradov, Phys. Lett. B 158, 485 (1985)
G.L. Li, K.F. Liu, G.E. Brown, Phys. Lett. B 213, 531 (1988)
M. Beiner, H. Flocard, Nguyen Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975)
J. Meyer, private communication
G. Chanfray, Nucl. Phys. A 532, 249c–254c (1991)
M. Ericson, PANIC 87 (North-Holland Publ.) 416c
C. Ciofi degli Atti, S. Iautt, Phys. Lett. B 225, 215 (1989)
C. Ciofi degli Atti, S.I. Iuti, Phys. Rev. C 41, 1100 (1990)
C. Cioffi degli Atti, Nucl. Phys. A 532, 241 (1991)
B. Desplanques, Ann. Phys. 15, 159 (1990)
B. Desplanques, Few-body-system, in Proceedings of the 5th International Symposium, ed. by E. Truhlik and R. Mach, 260 (1992)
S. Fantoni, V.R. Pandharipande, Nucl. Phys. A 427, 473492 (1984)
J. Goldstone, Proc. R. Soc. A 239, 267 (1956)
G. Chanfray, M. Ericson, Phys. Rev. C 75, 015206 (2007)
G. Chanfray, M. Ericson, Phys. Rev. C 83, 015204 (2011)
E. Massot, G. Chanfray, Phys. Rev. C 78, 015204 (2009)
E. Massot, G. Chanfray, Phys. Rev. C 80, 015202 (2009)
E. Massot, J. Margueron, G. Chanfray, EPL 97(3), 39002 (2012)
J. Hu, Y. Ogawa, H. Toki, A. Hosaka, H. Shen, Phys. Rev. C 79, 024305 (2009)
J. Hu, H. Toki, W. Wen, H. Shen, Eur. Phys. J. A43, 323 (2010)
J. Hu, H. Toki, H. Shen, J. Phys. G Nucl. Part. Phys. 38, 085105 (2011)
O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 505, 267 (1989)
O. Benhar, A. Fabrocini, S. Fantoni, Phys. Rev. C 41, R24 (1990)
O. Benhar, A. Fabrocini, S. Fantoni, Nucl. Phys. A 550, 250 (1992)
O. Benhar, S. Fantoni, Nuclear Matter Theory (Taylor and Francis, London, 2020)
A. Ramos, W.H. Dickhoff, A. Polls, Phys. Rev. C 43, 2239 (1991)
M. Ichimura, H. Sakai, T. Wakasa, Prog. Part. Nucl. Phys. 56, 446 (2006)
D.B. Leinweber, A.W. Thomas, R.D. Young, Phys. Rev. Lett. 92, 242002 (2004)
A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, Boston, 1971)
Author information
Authors and Affiliations
Appendices
The one-body Green’s function and the mass operator
In this appendix we remind some textbook formulas (see for example Ref. [91]) of the many-body theory.
The one-body Green’s function is defined as :
Its Lehmann representation can be written in a dispersive form as :
and is entirely known once the hole and particle spectral functions, defined as
are known.
The single particle propagator in nuclear matter is obtained as the diagonal component one-body Green’s function:
where \(M(E,\mathbf{k})\) is the mass operator.
The real and imaginary part of the nuclear matter single particle propagator can be expressed in terms of the spectral functions as:
The imaginary part of the mass operator \(M(E,\mathbf{k})\) (i.e. the optical potential), assuming that it is always smaller than the real part (see Ref. [62]) , is related to the single particle propagator and to the spectral functions by the following relations :
where \(\epsilon _k\) is the Hartree-Fock single particle energy. Inserting in Eq. (67) the expression of the spectral functions given by Eqs. (25), (24), we obtain the expression of Eq. (26) for the imaginary part of the mass operator.
Response function in the factorization approximation
In this appendix we explicitly derive the expression of the response function in the factorization approximation. The response function, already defined in Eq. (3), can be explicitly written as:
The response function is the imaginary part of the polarization propagator \(\varPi (\omega ,\mathbf{q})\), which can be expressed as:
where we have applied the factorization scheme which consists to approximate the two-body Green’s function as a product of two one-body Green’s functions. Using the Lehmann representation, given in Eq. (62), for the one-body Green’s function, one obtains for the polarization propagator:
The response function is obtained by taking the imaginary part (for positive \(\omega \)) of Eq. (70), leading to:
Rights and permissions
About this article
Cite this article
Chanfray, G., Ericson, M. & Martini, M. Multinucleon excitations in neutrino–nucleus scattering: connecting different microscopic models for the correlations. Eur. Phys. J. Spec. Top. 230, 4357–4372 (2021). https://doi.org/10.1140/epjs/s11734-021-00291-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjs/s11734-021-00291-x