Abstract
The anomalous transport of important materials such as high-temperature superconductors and other ‘bad metals’ is not well understood theoretically. In an incoherent metal, transport is controlled by the collective diffusion of energy and charge rather than by quasiparticle or momentum relaxation. Here, we explore the possibility of a universal bound D ≳ ℏνF2/(kBT) on the underlying diffusion constants in an incoherent metal. Such a bound is loosely motivated by results from holographic duality, the uncertainty principle and measurements of diffusion in strongly interacting non-metallic systems. Metals close to saturating this bound are shown to have a linear-in-temperature resistivity with an underlying dissipative timescale matching that recently deduced from experimental data on a wide range of metals. This bound may therefore be responsible for the ubiquitous appearance of high-temperature regimes in metals with T-linear resistivity. To establish this calls for direct measurements of diffusive processes and of charge susceptibilities in incoherent metals.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bruin, J. A. N., Sakai, H., Perry, R. S. & Mackenzie, A. P. Similarity of scattering rates in metals showing T-linear resistivity. Science 339, 804–807 (2013).
Sachdev, S. Quantum Phase Transitions (CUP, 1999).
Zaanen, J. Superconductivity: Why the temperature is high. Nature 430, 512–513 (2004).
Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott–Ioffe–Regel limit in metals. Phil. Mag. 84, 2847–2864 (2004).
Gunnarsson, O., Calandra, M. & Han, J. E. Colloquium: Saturation of electrical resistivity. Rev. Mod. Phys. 75, 1085–1099 (2003).
Emery, V. J. & Kivelson, S. A. Superconductivity in bad metals. Phys. Rev. Lett. 74, 3253–3256 (1995).
Policastro, G., Son, D. T. & Starinets, A. O. The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001).
Herzog, C. P., Kovtun, P., Sachdev, S. & Son, D. T. Quantum critical transport, duality, and M-theory. Phys. Rev. D 75, 085020 (2007).
Hartnoll, S. A., Kovtun, P. K., Muller, M. & Sachdev, S. Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007).
Kovtun, P., Son, D. T. & Starinets, A. O. Viscosity in strongly interacting quantum field theories from black hole physics. Phys. Rev. Lett. 94, 111601 (2005).
Son, D. T. & Starinets, A. O. Viscosity, black holes, and quantum field theory. Annu. Rev. Nucl. Part. Sci. 57, 95–118 (2007).
Cremonini, S. The shear viscosity to entropy ratio: A status report. Mod. Phys. Lett. B 25, 1867–1888 (2011).
Adams, A., Carr, L. D., Schäfer, T., Steinberg, P. & Thomas, J. E. Strongly correlated quantum fluids: Ultracold quantum gases, quantum chromodynamic plasmas, and holographic duality. New J. Phys. 14, 115009 (2012).
Ziman, J. M. Electrons and Phonons (OUP, 1960).
Forster, D. Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (W. A. Benjamin, Advanced Book Classics, 1975).
Hartnoll, S. A. & Hofman, D. M. Locally critical resistivities from umklapp scattering. Phys. Rev. Lett. 108, 241601 (2012).
Mahajan, R., Barkeshli, M. & Hartnoll, S. A. Non-Fermi liquids and the Wiedemann–Franz law. Phys. Rev. B 88, 125107 (2013).
Jung, P. & Rosch, A. Lower bounds for the conductivities of correlated quantum systems. Phys. Rev. B 75, 245104 (2007).
Hartnoll, S. A. & Herzog, C. P. Impure AdS/CFT correspondence. Phys. Rev. D 77, 106009 (2008).
Basov, D. N., Averitt, R. D., van der Marel, D., Dressel, M. & Haule, K. Electrodynamics of correlated electron materials. Rev. Mod. Phys. 83, 471–541 (2011).
Fisher, M. P. A., Weichman, P. B., Grinstein, G. & Fisher, D. S. Boson localization and the superfluid-insulator transition. Phys. Rev. B 40, 546–570 (1989).
Witczak-Krempa, W., Ghaemi, P., Senthil, T. & Kim, Y. B. Universal transport near a quantum critical Mott transition in two dimensions. Phys. Rev. B 86, 245102 (2012).
Metlitski, M. A. & Sachdev, S. Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order. Phys. Rev. B 82, 075128 (2010).
Prange, R. E. & Kadanoff, L. P. Transport theory for electron–phonon interactions in metals. Phys. Rev. 134, A566 (1964).
Koschorreck, M., Pertot, D., Vogt, E. & Köhl, M. Universal spin dynamics in two-dimensional Fermi gases. Nature Phys. 9, 405–409 (2013).
Spivak, B. & Kivelson, S. A. Transport in two dimensional electronic micro-emulsions. Ann. Phys. 321, 2071–2115 (2006).
Andreev, A. V., Kivelson, S. A. & Spivak, B. Hydrodynamic description of transport in strongly correlated electron systems. Phys. Rev. Lett. 106, 256804 (2011).
Balasubramanian, K. & Herzog, C. P. Losing forward momentum holographically. Class. Quantum Gravity 31, 125010 (2014).
Davison, R. A., Schalm, K. & Zaanen, J. Holographic duality and the resistivity of strange metals. Phys. Rev. B 89, 245116 (2014).
Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).
Deng, X. et al. How bad metals turn good: Spectroscopic signatures of resilient quasiparticles. Phys. Rev. Lett. 110, 086401 (2013).
Pálsson, G. & Kotliar, G. Thermoelectric response near the density driven Mott transition. Phys. Rev. Lett. 80, 4775 (1998).
Kovtun, P. & Ritz, A. Universal conductivity and central charges. Phys. Rev. D 78, 066009 (2008).
Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).
Takenaka, K., Nohara, J., Shiozaki, R. & Sugai, S. Incoherent charge dynamics of La2−xSrxCuO4: Dynamical localization and resistivity saturation. Phys. Rev. B 68, 134501 (2003).
Van der Marel, D. et al. Quantum critical behaviour in a high-Tc superconductor. Nature 425, 271–274 (2003).
Hwang, J., Timusk, T. & Gu, G. D. Doping dependent optical properties of Bi2Sr2CaCu2O8+δ . J. Phys. Condens. Matter 19, 125208 (2007).
Boris, A. V. et al. In-plane spectral weight shift of charge carriers in YBa2Cu3O6.9 . Science 304, 708–710 (2004).
Wu, D. et al. Effects of magnetic ordering on dynamical conductivity: Optical investigations of EuFe2As2 single crystals. Phys. Rev. B 79, 155103 (2009).
Schafgans, A. A. et al. Electronic correlations and unconventional spectral weight transfer in the high-temperature pnictide BaFe2−xCoxAs2 superconductor using infrared spectroscopy. Phys. Rev. Lett. 108, 147002 (2012).
Takenaka, K. et al. Collapse of coherent quasiparticle states in θ-(BEDT–TTF)2I3 observed by optical spectroscopy. Phys. Rev. Lett. 95, 227801 (2005).
Jönsson, P. E. et al. Correlation-driven heavy-fermion formation in LiV2O4 . Phys. Rev. Lett. 99, 167402 (2007).
Wang, N. L. et al. Infrared probe of the electronic structure and charge dynamics of Na0.7CoO2 . Phys. Rev. Lett. 93, 237007 (2004).
Lee, Y. S. et al. Non-Fermi liquid behavior and scaling of the low-frequency suppression in the optical conductivity spectra of CaRuO3 . Phys. Rev. B 66, 041104(R) (2002).
Witczak-Krempa, W. & Sachdev, S. The quasi-normal modes of quantum criticality. Phys. Rev. B 86, 235115 (2012).
Deng, X., Sternbach, A., Haule, K., Basov, D. N. & Kotliar, G. Shining light on transition metal oxides: Unveiling the hidden Fermi liquid. Preprint at http://arXiv.org/abs/1404.6480 (2014)
Jaramillo, R., Ha, S. D., Silevitch, D. M. & Ramanathan, S. Origins of bad-metal conductivity and the insulator–metal transition in the rare-earth nickelates. Nature Phys. 10, 304–307 (2014).
Ando, Y., Lavrov, A. N., Komiya, S., Segawa, K. & Sun, X. F. Mobility of the doped holes and the antiferromagnetic correlations in underdoped high-Tc cuprates. Phys. Rev. Lett. 87, 017001 (2001).
Hussey, N. E. et al. Dichotomy in the T-linear resistivity in hole-doped cuprates. Phil. Trans. R. Soc. A 369, 1626–1639 (2011).
Orenstein, J. et al. Frequency- and temperature-dependent conductivity in YBa2Cu3O6+x crystals. Phys. Rev. B 42, 6342–6362 (1990).
Uchida, S. et al. Optical spectra of La2−xSrxCuO4: Effect of carrier doping on the electronic structure of the CuO2 plane. Phys. Rev. B 43, 7942–7954 (1991).
Taillefer, L. Scattering and pairing in cuprate superconductors. Annu. Rev. Condens. Matter Phys. 1, 51–70 (2010).
Tanatar, M. A., Paglione, J., Petrovic, C. & Taillefer, L. Anisotropic violation of the Wiedemann–Franz law at a quantum critical point. Science 316, 1320–1322 (2007).
Pfau, H. et al. Thermal and electrical transport across a magnetic quantum critical point. Nature 484, 493–497 (2012).
Zhang, Y. et al. Determining the Wiedemann–Franz ratio from the thermal Hall conductivity: Application to Cu and YBa2Cu3O6.95 . Phys. Rev. Lett. 84, 2219–2222 (2000).
Wu, X. D. et al. Thermal diffusivity of Bi2Sr2CaCu2O8 single crystals. Physica C 218, 417–423 (1993).
Wu, X. D., Kino, G. S., Fanton, J. T. & Kapitulnik, A. Photothermal microscope for high-Tc superconductors and charge density waves. Rev. Sci. Instrum. 64, 3321–3327 (1993).
Weber, C. P. et al. Observation of spin Coulomb drag in a two-dimensional electron gas. Nature 437, 1330–1333 (2005).
Gedik, N., Orenstein, J., Liang, R., Bonn, D. A. & Hardy, W. N. Diffusion of nonequilibrium quasi-particles in a cuprate superconductor. Science 300, 1410–1412 (2003).
Donos, A. & Gauntlett, J. P. Novel metals and insulators from holography. JHEP 1406, 007 (2014).
Goutéraux, B. Charge transport in holography with momentum dissipation. JHEP 1404, 181 (2014).
Mukerjee, S., Oganesyan, V. & Huse, D. Towards a statistical theory of transport by strongly-interacting lattice fermions. Phys. Rev. B 73, 035113 (2006).
Kadanoff, L. P. & Martin, P. C. Hydrodynamic equations and correlation functions. Ann. Phys. 24, 419–469 (1963).
Acknowledgements
I have benefited greatly from discussions with A. Kapitulnik, G. Kotliar, B. Laughlin, A. Mackenzie, R. McKenzie, V. Oganesyan, J. Orenstein, B. Spivak and especially S. Kivelson. S.A.H. is partially financially supported by a DOE Early Career Award and by a Sloan fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing financial interests.
Rights and permissions
About this article
Cite this article
Hartnoll, S. Theory of universal incoherent metallic transport. Nature Phys 11, 54–61 (2015). https://doi.org/10.1038/nphys3174
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nphys3174
This article is cited by
-
Anomalous enhancement of the Nernst effect at the crossover between a Fermi liquid and a strange metal
Nature Physics (2023)
-
The scaled-invariant Planckian metal and quantum criticality in Ce1−xNdxCoIn5
Nature Communications (2023)
-
Planckian dissipation and non-Ginzburg-Landau type upper critical field in Bi2201
Science China Physics, Mechanics & Astronomy (2023)
-
Information scrambling and entanglement dynamics of complex Brownian Sachdev-Ye-Kitaev models
Journal of High Energy Physics (2023)
-
Semiclassical electron and phonon transport from first principles: application to layered thermoelectrics
Journal of Computational Electronics (2023)