Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1

Abstract

During activation, T cells express receptors for receiving positive and negative costimulatory signals. Here we identify the B and T lymphocyte attenuator (BTLA), an immunoglobulin domain–containing glycoprotein with two immunoreceptor tyrosine-based inhibitory motifs. BTLA is not expressed by naive T cells, but it is induced during activation and remains expressed on T helper type 1 (TH1) but not TH2 cells. Crosslinking BTLA with antigen receptors induces its tyrosine phosphorylation and association with the Src homology domain 2 (SH2)-containing protein tyrosine phosphatases SHP-1 and SHP-2, and attenuates production of interleukin 2 (IL-2). BTLA-deficient T cells show increased proliferation, and BTLA-deficient mice have increased specific antibody responses and enhanced sensitivity to experimental autoimmune encephalomyelitis. B7x, a peripheral homolog of B7, is a ligand of BTLA. Thus, BTLA is a third inhibitory receptor on T lymphocytes with similarities to cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) and programmed death 1 (PD-1).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BTLA sequence and genomic structure.
Figure 2: Expression of BTLA in lymphoid cells.
Figure 3: BTLA is transmembrane, glycoslyated, and tyrosine-phosphorylated on induction.
Figure 4: Inducible association of BTLA with SHP-2.
Figure 5: Generation and analysis of BTLA-deficient mice.
Figure 6: In vitro responses of BTLA-deficient lymphocytes.
Figure 7: Increased EAE susceptibility in BTLA-deficient mice.
Figure 8: Infiltration of the CNS in MOG-induced EAE in BTLA-deficient mice.
Figure 9: BTLA interacts with an orphan B7 B7x.

Similar content being viewed by others

References

  1. Coyle, A.J. & Gutierrez-Ramos, J.C. The expanding B7 superfamily: increasing complexity in costimulatory signals regulating T cell function. Nat. Immunol. 2, 203–209 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hutloff, A. et al. ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397, 263–266 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Swallow, M.M., Wallin, J.J. & Sha, W.C. B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFα. Immunity 11, 423–432 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Yoshinaga, S.K. et al. T-cell co-stimulation through B7RP-1 and ICOS. Nature 402, 827–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ling, V. et al. Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J. Immunol. 164, 1653–1657 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, S. et al. Costimulation of T cells by B7-H2, a B7-like molecule that binds ICOS. Blood 96, 2808–2813 (2000).

    CAS  PubMed  Google Scholar 

  7. Brodie, D. et al. LICOS, a primordial costimulatory ligand? Curr. Biol. 10, 333–336 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, L. & Sha, W.C. The right place at the right time: novel B7 family members regulate effector T cell responses. Curr. Opin. Immunol. 14, 384–390 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Liang, L., Porter, E.M. & Sha, W.C. Constitutive expression of the B7h ligand for inducible costimulator on naive B cells is extinguished after activation by distinct B cell receptor and interleukin 4 receptor–mediated pathways and can be rescued by CD40 signaling. J. Exp. Med. 196, 97–108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishida, Y. et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J. 11, 3887–3895 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nishimura, H. et al. Immunological studies on PD-1 deficient mice: implication of PD-1 as a negative regulator for B cell responses. Int. Immunol. 10, 1563–1572 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Freeman, G.J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dong, H. et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5, 1365–1369 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Latchman, Y. et al. PD-L2 is a second ligand for PD-I and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Tseng, S.Y. et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J. Exp. Med. 193, 839–846 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chapoval, A.I. et al. B7-H3: a costimulatory molecule for T cell activation and IFN-γ production. Nat. Immunol. 2, 269–274 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, M. et al. Characterization of mouse and human B7-H3 genes. J. Immunol. 168, 6294–6297 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Yang, J. et al. IL-18-stimulated GADD45β required in cytokine-induced, but not TCR-induced, IFN-γ production. Nat. Immunol. 2, 157–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Tomasello, E. et al. Signaling pathways engaged by NK cell receptors: double concerto for activating receptors, inhibitory receptors and NK cells. Semin. Immunol. 12, 139–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Bolland, S. & Ravetch, J.V. Inhibitory pathways triggered by ITIM-containing receptors. Adv. Immunol. 72, 149–177 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, Y. & Allison, J.P. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. USA 94, 9273–9278 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Songyang, Z. et al. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14, 2777–2785 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nishimura, H. et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11, 141–151 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Shlapatska, L.M. et al. CD150 association with either the SH2-containing inositol phosphatase or the SH2-containing protein tyrosine phosphatase is regulated by the adaptor protein SH2D1A. J. Immunol. 166, 5480–5487 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Haskins, K. et al. The major histocompatibility complex–restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J. Exp. Med. 157, 1149–1169 (1983).

    Article  CAS  PubMed  Google Scholar 

  27. Okazaki, T. et al. PD-1 immunoreceptor inhibits B cell receptor–mediated signaling by recruiting Src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc. Natl. Acad. Sci. USA 98, 13866–13871 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chambers, C.A. et al. Secondary but not primary T cell responses are enhanced in CTLA-4-deficient CD8+ T cells. Eur. J. Immunol. 28, 3137–3143 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Oosterwegel, M.A. et al. The role of CTLA-4 in regulating Th2 differentiation. J. Immunol. 163, 2634–2639 (1999).

    CAS  PubMed  Google Scholar 

  30. Greenwald, R.J. et al. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Sabelko-Downes, K.A., Cross, A.H. & Russell, J.H. Dual role for Fas ligand in the initiation of and recovery from experimental allergic encephalomyelitis. J. Exp. Med. 189, 1195–1205 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharpe, A.H. & Freeman, G.J. The B7-CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Khattri, R. et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunl. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  35. Bachmann, M.F. et al. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  36. Bachmann, M.F. et al. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur. J. Immunol. 31, 450–458 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tivol, E.A. & Gorski, J. Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J. Immunol. 169, 1852–1858 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Finger, E.B. & Bluestone, J.A. When ligand becomes receptor—tolerance via B7 signaling on DCs. Nat. Immunol. 3, 1056–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Nishimura, H. et al. Autoimmune dilated cardiomyopathy in PD-1 receptor–deficient mice. Science 291, 319–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Bennett, F. et al. Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J. Immunol. 170, 711–718 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Carter, L. et al. PD-1:PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur. J. Immunol. 32, 634–643 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Brunner, M.C. et al. CTLA-4-mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  44. Luhder, F. et al. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Luhder, F. et al. Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc. Natl. Acad. Sci. USA 97, 12204–12209 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Abiru, N., Kawasaki, E. & Eguch, K. Current knowledge of Japanese type 1 diabetic syndrome. Diabetes Metab. Res. Rev. 18, 357–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature; advance online publication 30 April 2003/ doi 10.1038/nature01621.

  48. Ranganath, S. et al. GATA-3-dependent enhancer activity in IL-4 gene regulation. J. Immunol. 161, 3822–3826 (1998).

    CAS  PubMed  Google Scholar 

  49. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Hsieh, C.S. et al. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260, 547–549 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Sha, W.C. et al. Selective expression of an antigen receptor on CD8-bearing T lymphocytes in transgenic mice. Nature 335, 271–274 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Sleckman for help with gene targeting; M. White for generating chimeric mice; M. Gimenez for help with immunohistochemistry; and W. Sha for discussions. This work was supported in part by grants from the National Institutes of Health. J.P.A. and K.M.M. are Investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth M Murphy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Gavrieli, M., Sedy, J. et al. BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4, 670–679 (2003). https://doi.org/10.1038/ni944

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni944

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing