Nothing Special   »   [go: up one dir, main page]

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Computational principles of movement neuroscience

Abstract

Unifying principles of movement have emerged from the computational study of motor control. We review several of these principles and show how they apply to processes such as motor planning, control, estimation, prediction and learning. Our goal is to demonstrate how specific models emerging from the computational approach provide a theoretical framework for movement neuroscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The sensorimotor loop, showing motor command generation (top), state transition (right) and sensory feedback generation (left).
Figure 2: Task optimization in the presence of signal-dependent noise (TOPS) model of Harris and Wolpert9.
Figure 3: A schematic of one step of a Kalman filter model recursively estimating the finger's location during a movement.
Figure 4: A schematic of context estimation with just two contexts, that a milk carton is empty or full.
Figure 5: A schematic of feedback-error learning.

Similar content being viewed by others

References

  1. Bellman, R. Dynamic Programming (Princeton Univ. Press, Princeton, New Jersey, 1957).

    Google Scholar 

  2. Shadmehr, R. & Mussa-Ivaldi, F. Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994).

    Article  CAS  Google Scholar 

  3. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I. An internal model for sensorimotor integration. Science 269, 1880–1882 ( 1995).

    Article  CAS  Google Scholar 

  4. Ghahramani, Z. & Wolpert, D. M. Modular decomposition in visuomotor learning. Nature 386, 392– 395 (1997).

    Article  CAS  Google Scholar 

  5. Gomi, H. & Kawato, M. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–120 ( 1996).

    Article  CAS  Google Scholar 

  6. Cohn, J. V., DiZio, P. & Lackner, J. R. Reaching during virtual rotation: context specific compensations for expected coriolis forces. J. Neurophysiol. 83, 3230–3240 (2000).

    Article  CAS  Google Scholar 

  7. Flash, T. & Hogan, N. The co-ordination of arm movements: An experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985).

    Article  CAS  Google Scholar 

  8. Uno, Y., Kawato, M. & Suzuki, R. Formation and control of optimal trajectories in human multijoint arm movements: Minimum torque-change model. Biol. Cybern. 61, 89–101 ( 1989).

    Article  CAS  Google Scholar 

  9. Harris, C. M. & Wolpert, D. M. Signal-dependent noise determines motor planning. Nature 394, 780– 784 (1998).

    Article  CAS  Google Scholar 

  10. Kitazawa, S., Kimura, T. & Yin, P. Cerebellar complex spikes encode both destinations and errors in arm movements . Nature 392, 494–497 (1998).

    Article  CAS  Google Scholar 

  11. Feldman, A. G. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. III. Mechanographic analysis of execution by arm of the simplest motor tasks. Biophysics 11, 766 –775 (1966).

    Google Scholar 

  12. Bizzi, E., Accornerro, N., Chapple, B. & Hogan, N. Posture control and trajectory formation during arm movement. J. Neurosci. 4, 2738–2744 (1984).

    Article  CAS  Google Scholar 

  13. Hogan, N. An organizing principle for a class of voluntary movements. J. Neurosci. 4, 2745–2754 ( 1984).

    Article  CAS  Google Scholar 

  14. Flash, T. The control of hand equilibrium trajectories in multi-joint arm movements . Biol. Cybern. 57, 257– 274 (1987).

    Article  CAS  Google Scholar 

  15. Kawato, M., Furawaka, K. & Suzuki, R. A hierarchical neural network model for the control and learning of voluntary movements. Biol. Cybern. 56, 1–17 (1987).

    Article  Google Scholar 

  16. Giszter, S. F., Mussa-Ivaldi, F. A. & Bizzi, E. Convergent force fields organized in the frog's spinal cord. J. Neurosci. 13, 467– 491 (1993).

    Article  CAS  Google Scholar 

  17. Tresch, M. C., Saltiel, P. & Bizzi, E. The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167 (1999).

    Article  CAS  Google Scholar 

  18. Mussa-Ivaldi, F. A. Modular features of motor control and learning. Curr. Opin. Neurobiol. 9, 713–717 ( 1999).

    Article  CAS  Google Scholar 

  19. Mussa-Ivaldi, F. A. Do neurons in the motor cortex encode movement direction? An alternative hypothesis . Neurosci. Lett. 91, 106– 111 (1988).

    Article  CAS  Google Scholar 

  20. Sanger, T. Theoretical considerations for the analysis of population coding in motor cortex. Neural Comput. 6, 29– 37 (1994).

    Article  Google Scholar 

  21. Georgopoulos, A. P. Current issues in directional motor control. Trends Neurosci. 18, 506–510 (1995).

    Article  CAS  Google Scholar 

  22. Scott, S. & Kalaska, J. F. Motor cortical activity is altered by changes in arm posture for identical hand trajectories. J. Neurophysiol. 73, 2563–2567 ( 1995).

    Article  CAS  Google Scholar 

  23. Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science 285, 2136– 2139 (1999).

    Article  CAS  Google Scholar 

  24. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3, 391– 398 (2000).

    Article  CAS  Google Scholar 

  25. Goodwin, G. C. & Sin, K. S. Adaptive Filtering Prediction and Control (Prentice-Hall, Englewood Cliffs, New Jersey, 1984).

    Google Scholar 

  26. van Beers, R. J., Sittig, A. C. & van der Gon, J. J. D. Integration of proprioceptive and visual position-information: An experimentally supported model. J. Neurophysiol. 81, 1355–1364 (1999).

    Article  CAS  Google Scholar 

  27. Kuo, A. D. An optimal-control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 42, 87–101 (1995).

    Article  CAS  Google Scholar 

  28. Merfeld, D. M., Zupan, L. & Peterka, R. J. Humans use internal model to estimate gravity and linear acceleration. Nature 398, 615– 618 (1999).

    Article  CAS  Google Scholar 

  29. Wolpert, D. M., Goodbody, S. J. & Husain, M. Maintaining internal representations: the role of the superior parietal lobe. Nat. Neurosci. 1, 529–533 (1998).

    Article  CAS  Google Scholar 

  30. Miall, R. C. & Wolpert, D. M. Forward models for physiological motor control. Neural Networks 9, 1265– 1279 (1996).

    Article  Google Scholar 

  31. Johansson, R. S. & Cole, K. J. Sensory-motor coordination during grasping and manipulative actions. Curr. Opin. Neurobiol. 2, 815–823 ( 1992).

    Article  CAS  Google Scholar 

  32. Sirigu, A. et al. The mental representation of hand movements after parietal cortex damage. Science 273, 1564– 1568 (1996).

    Article  CAS  Google Scholar 

  33. Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 ( 1997).

    Article  CAS  Google Scholar 

  34. Duhamel, J. R., Colby, C. L. & Goldberg, M. E. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255, 90–92 (1992).

    Article  CAS  Google Scholar 

  35. Blakemore, S. J., Frith, C. D. & Wolpert, D. M. Perceptual modulation of self-produced stimuli: The role of spatio-temporal prediction. J. Cogn. Neurosci. 11, 551–559 (1999).

    Article  CAS  Google Scholar 

  36. Frith, C. D. The Cognitive Neuropsychology of Schizophrenia (Lawrenece Erlbaum, Hove, UK, 1992).

    Google Scholar 

  37. Sirigu, A., Daprati, E., Pradatdiehl, P., Franck, N. & Jeannerod, M. Perception of self-generated movement following left parietal lesion. Brain 122, 1867–1874 (1999).

    Article  Google Scholar 

  38. Wolpert, D. M. & Kawato, M. Multiple paired forward and inverse models for motor control. Neural Networks 11, 1317–1329 (1998).

    Article  CAS  Google Scholar 

  39. Eskandar, E. N. & Assad, J. A. Dissociation of visual, motor and predictive signals in parietal cortex during visual guidance . Nat. Neurosci. 2, 88– 93 (1999).

    Article  CAS  Google Scholar 

  40. Kim, J. & Shadlen, M. N. Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque. Nat. Neurosci. 2, 176–185 ( 1999).

    Article  Google Scholar 

  41. Kawato, M. & Gomi, H. The cerebellum and VOR/OKR learning models. Trends Neurosci. 15, 445– 453 (1992).

    Article  CAS  Google Scholar 

  42. Shidara, M., Kawano, K., Gomi, H. & Kawato, M. Inverse-dynamics encoding of eye movement by Purkinje cells in the cerebellum. Nature 365, 50–52 ( 1993).

    Article  CAS  Google Scholar 

  43. Lackner, J. R. & DiZio, P. Rapid adaptation to Coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 ( 1994).

    Article  CAS  Google Scholar 

  44. Conditt, M. A., Gandolfo, F. & Mussa-Ivaldi, F. A. The motor system does not learn dynamics of the arm by rote memorization of past experience. J. Neurophysiol. 78, 554–560 (1997).

    Article  CAS  Google Scholar 

  45. Conditt, M. A. & Mussa-Ivaldi, F. A. Central representation of time during motor learning. Proc. Natl. Acad. Sci. USA 96, 11625–11630 (1999).

    Article  CAS  Google Scholar 

  46. Bhushan, N. & Shadmehr, R. Computational nature of human adaptive control during learning of reaching movements in force fields. Biol. Cybern. 81, 39–60 (1999).

    Article  CAS  Google Scholar 

  47. Brashers-Krug, T., Shadmehr, R. & Bizzi, E. Consolidation in human motor memory. Nature 382, 252–255 ( 1996).

    Article  CAS  Google Scholar 

  48. Gandolfo, F., Mussa-Ivaldi, F. A. & Bizzi, E. Motor learning by field approximation. Proc. Natl. Acad. Sci. USA 93, 3843–3846 (1996).

    Article  CAS  Google Scholar 

  49. Krakauer, J. W., Ghilardi, M. F. & Ghez, C. Independent learning of internal models for kinematic and dynamic control of reaching. Nat. Neurosci. 2, 1026–1031 (1999).

    Article  CAS  Google Scholar 

  50. Flanagan, J. R. et al. Composition and decomposition of internal models in motor learning under altered kinematic and dynamic environments. J. Neurosci. 19, B1–B5 ( 1999).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pierre Baraduc, Robert van Beers, James Ingram, Kelvin Jones and Philipp Vetter for comments on the manuscript. This work was supported by grants from the Wellcome Trust, the Gatsby Charitable Foundation and the Human Frontiers Science Organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Wolpert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolpert, D., Ghahramani, Z. Computational principles of movement neuroscience. Nat Neurosci 3 (Suppl 11), 1212–1217 (2000). https://doi.org/10.1038/81497

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing