Abstract
Let \(\mathcal{G}(z):=\sum_{n\geqslant0} z^{2^{n}}(1-z^{2^{n}})^{-1}\) denote the generating function of the ruler function, and \(\mathcal {F}(z):=\sum_{n\geqslant} z^{2^{n}}(1+z^{2^{n}})^{-1}\); note that the special value \(\mathcal{F}(1/2)\) is the sum of the reciprocals of the Fermat numbers \(F_{n}:=2^{2^{n}}+1\). The functions \(\mathcal{F}(z)\) and \(\mathcal{G}(z)\) as well as their special values have been studied by Mahler, Golomb, Schwarz, and Duverney; it is known that the numbers \(\mathcal {F}(\alpha)\) and \(\mathcal{G}(\alpha)\) are transcendental for all algebraic numbers α which satisfy 0<α<1.
For a sequence u, denote the Hankel matrix \(H_{n}^{p}(\mathbf {u}):=(u({p+i+j-2}))_{1\leqslant i,j\leqslant n}\). Let α be a real number. The irrationality exponent μ(α) is defined as the supremum of the set of real numbers μ such that the inequality |α−p/q|<q −μ has infinitely many solutions (p,q)∈ℤ×ℕ.
In this paper, we first prove that the determinants of \(H_{n}^{1}(\mathbf {g})\) and \(H_{n}^{1}(\mathbf{f})\) are nonzero for every n⩾1. We then use this result to prove that for b⩾2 the irrationality exponents \(\mu(\mathcal{F}(1/b))\) and \(\mu(\mathcal{G}(1/b))\) are equal to 2; in particular, the irrationality exponent of the sum of the reciprocals of the Fermat numbers is 2.
Similar content being viewed by others
References
Allouche, J.-P., Peyrière, J., Wen, Z.-X., Wen, Z.-Y.: Hankel determinants of the Thue–Morse sequence. Ann. Inst. Fourier (Grenoble) 48(1), 1–27 (1998)
Adamczewski, B., Rivoal, T.: Irrationality measures for some automatic real numbers. Math. Proc. Camb. Philos. Soc. 147(3), 659–678 (2009)
Brezinski, C.: Padé-type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics, vol. 50. Birkhäuser, Basel (1980)
Bugeaud, Y.: On the rational approximation of the Thue–Morse–Mahler number. Ann. Inst. Fourier (Grenoble) (to appear)
Coons, M.: Extension of some theorems of W. Schwarz. Can. Math. Bull. (2011). doi:10.4153/CMB-2011-037-9
Duverney, D.: Transcendence of a fast converging series of rational numbers. Math. Proc. Camb. Philos. Soc. 130(2), 193–207 (2001)
Golomb, S.W.: On the sum of the reciprocals of the Fermat numbers and related irrationalities. Can. J. Math. 15, 475–478 (1963)
Liouville, J.: Sur des classes très étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationelles algébriques. C. R. Acad. Sci. Paris 18, 883–885 (1844). 910–911
Mahler, K.: Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101(1), 342–366 (1929)
Mahler, K.: Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32(1), 545–585 (1930)
Mahler, K.: Uber das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen. Math. Ann. 103(1), 573–587 (1930)
Roth, K.F.: Rational approximations to algebraic numbers. Mathematika 2, 1–20 (1955). Corrigendum 168
Schwarz, W.: Remarks on the irrationality and transcendence of certain series. Math. Scand. 20, 269–274 (1967)
Acknowledgements
We wish to thank Yann Bugeaud, Kevin Hare, Cameron Stewart, and Jeffrey Shallit for helpful comments and conversations.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research of M. Coons was supported in part by a Fields–Ontario Fellowship and NSERC.
Rights and permissions
About this article
Cite this article
Coons, M. On the rational approximation of the sum of the reciprocals of the Fermat numbers. Ramanujan J 30, 39–65 (2013). https://doi.org/10.1007/s11139-012-9410-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11139-012-9410-x