Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Design study and heat transfer analysis of a neutron converter target for medical radioisotope production

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A worldwide challenge in the near future will be to find a way of producing radioisotopes in sufficient quantity without relying on research reactors. The motivation for this innovative work on targets lies in the accelerator-based production of radioisotopes using a neutron converter target as in the transmutation by adiabatic resonance crossing concept. Thermal analysis of a multi-channel helium cooled device is performed with the computational fluid dynamics code CFX. Different boundary conditions are taken into account in the simulation process and many important parameters such as maximum allowable solid target temperature as well as uniform inlet velocity and outlet pressure changes in the channels are investigated. The results confirm that the cooling configuration works well; hence such a solid target could be operated safely and may be considered for a prototype target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Medical radioisotopes production without a nuclear reactor (2010) Nuclear information and resource service. http://www.nirs.org/mononline/nm710.pdf. Accessed 8 May 2012

  2. Barbalat O (1994) Applications of particle accelerators, CERN Report (CERN/AC/93-04(BLIT)/Rev.). CERN, Geneva

  3. Silari M (2011) Radiat Prot Dosim 146:440–450

    Article  CAS  Google Scholar 

  4. McCarthy DW, Shefer RE, Klinkowstein RE, Bass LA, Margeneau WH, Cutler CS, Anderson CJ, Welch MJ (1997) Nucl Med Biol 24:35–43

    Article  CAS  Google Scholar 

  5. Cryer D, Chan S, Price RI, RAPID Group (2008) Design and construction of a compact semi automated solid target irradiation system for the production of 124I, 64Cu plus various solid-targetry based radioisotopes, using an 18/9 MeV IBA cyclotron, 12th International Workshop on Targetry and Target Chemistry, Seattle, Washington

  6. Thisgaard H, Jensen M, Elema DR (2011) Appl Radiat Isot 69:1–7

    Article  CAS  Google Scholar 

  7. Sadeghi M, Tenreiro C, Van den Winkel P (2009) Nukleonika 54:169–173

    CAS  Google Scholar 

  8. Aboudzadeh Rovais MR, Yousefi K, Ardaneh K, Mirzaii M (2011) Nukleonika 56:283–289

    Google Scholar 

  9. Blue TE, Yanch JC (2003) J Neuro-Oncol 62:19–31

    Google Scholar 

  10. Kim JK, Kim K (2009) Nucl Eng Technol 41:531–544

    Article  CAS  Google Scholar 

  11. Abánades A et al (2002) Nucl Instr Meth A 478:577–730

    Article  Google Scholar 

  12. Abbas K et al (2009) Nucl Instr Meth A 601:223–228

    Article  CAS  Google Scholar 

  13. Buono S, Burgio N, Maciocco L, Rocca R (2006) Development of a target system for the production of β emitting radioisotopes with small-size cyclotrons, 11th International Workshop on Targetry and Target Chemistry, University of Cambridge

  14. Randers-Pehrson G, Brenner DJ (1998) Med Phys 25:894–896

    Article  CAS  Google Scholar 

  15. Ferrari A, Sala PR, Fassò A, Ranft J (2005) FLUKA: a multi-particle tansport code, CERN-2005-10, INFN/TC_05/11, SLAC-R-773

  16. Battistoni G, Muraro S, Sala PR, Cerutti F, Ferrari A, Roesler S, Fassò A, Ranft J (2007) The FLUKA code: Description and benchmarking, Proceeding of the hadronic shower simulation workshop 2006, Albrow M, Raja R ed. AIP Conference Proceeding 896:31–49

    Google Scholar 

  17. Berger MJ, Coursey JS, Zucker MA, Chang J, Stopping-Power and Range Tables for Electrons, Protons and Helium Ions, http://www.nist.gov/pml/data/star/index.cfm, NIST, Physical Measurement Laboratory

  18. Kharoua C, et. al. (2011) Rotating tungsten helium cooled target, 4th High Power Targetry Workshop, Malmo

  19. Vassilopoulos N (2011) Optimization of the target and magnetic horn for the CERN to Fréjus neutrino beam, 11th International workshop on neutrino factories, super beams and beta beams, CERN, Geneva

  20. Incropera FP, DeWitt DP, Bergman TL, Lavine AS (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken

    Google Scholar 

  21. Ansys (2009) Manual documents to Ansys 12.0, ANSYS Inc. Proprietary

  22. Jung NS, Kim IJ, Kim SJ, Choi HD (2010) Appl Radiat Isot 68:566–569

    Article  CAS  Google Scholar 

  23. Samec K, Milenkovic RZ, Blumenfeld L, Dementjevs S, Kharoua C, Kadi Y (2011) Nucl Instrum Meth A 638:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by WCU (World Class University) program through the National Research Foundation of Korea, funded by the Ministry of Education, Science and Technology (R31-2008-10029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Behzad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behzad, M., Samec, K., Bak, SI. et al. Design study and heat transfer analysis of a neutron converter target for medical radioisotope production. J Radioanal Nucl Chem 299, 1001–1006 (2014). https://doi.org/10.1007/s10967-013-2637-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2637-1

Keywords

Navigation