Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

On the Existence of Specific Stars in Planar Graphs

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a graph G, a (k;a,b,c)-star in G is a subgraph isomorphic to a star K1,3 with a central vertex of degree k and three leaves of degrees a, b and c in G. The main result of the paper is:

Every planar graph G of minimum degree at least 3 contains a (k;a,b,c)-star with abc and (i) k = 3, a≤ 10, or (ii) k = 4, a = 4, 4≤ b≤ 10, or (iii) k = 4, a = 5, 5≤ b≤ 9, or (iv) k = 4, 6≤ a≤ 7, 6≤ b≤ 8, or (v) k = 5, 4≤ a≤ 5, 5≤ b≤ 6 and 5≤ c≤ 7, or (vi) k = 5 and a = b = c = 6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ando, K., Iwasaki, S., Kaneko, A.: Every 3-connected planar graph has a connected subgraph with small degree sum, Annual Meeting of Mathematical Society of Japan (1993) (Japanese)

  • Balogh, J., Kochol, M., Pluhár, A., Yu, X.: Covering planar graphs with forests, J. Combin. Theory Ser. B 94, 147–158 (2005)

    Google Scholar 

  • Dvořák, Z., Král’, D., Nejedlý, P., Škrekovski, R.: Coloring squares of planar graphs with girth six, European J. Combin. (to appear)

  • Enomoto, H., Ota, K.: Connected subgraphs with small degree sum in 3-connected planar graphs, J. Graph Theory 30, 191–203 (1999)

    Google Scholar 

  • Fabrici, I., Harant, J., Jendrol’, S.: Paths of low weight in planar graphs, Discuss. Math. Graph Theory (to appear)

  • Fabrici, I., Jendrol’, S.: Subgraphs with restricted degrees of their vertices in planar 3-connected graphs, Graphs Combin. 13, 245–250 (1997)

    Google Scholar 

  • Franklin, P.: The four color problem, Am. J. Math. 44, 225–236 (1922)

    Google Scholar 

  • Grünbaum, B.: New views on some old questions of combinatorial geometry, Int. Teorie Combinat. 1, 451–468 (1976)

    Google Scholar 

  • van den Heuvel, J., McGuinness, S.: Coloring the square of a planar graph, J. Graph Theory 42, 110–124 (2003)

    Google Scholar 

  • Ivančo, J.: The weight of a graph, Ann. Discrete Math. 51 113–116 (1992)

    Google Scholar 

  • Jendrol’, S.: Paths with restricted degrees of their vertices in planar graphs, Czechoslovak Math. J. 49(124), 481–490 (1999)

    Google Scholar 

  • Jendrol’, S., Madaras, T.: On light subgraphs in plane graphs of minimum degree five, Discuss. Math. Graph Theory 16, 207–217 (1996)

    Google Scholar 

  • Jendrol’, S., Madaras, T.: Note on an existence of small degree vertices with at most one big degree neighbour in planar graph, Tatra Mt. Math. Publ. 30, 1–5 (2004)

    Google Scholar 

  • Jendrol’, S., Schiermeyer, I.: On max-min problem concerning weights of edges, Combinatorica 21, 351–359 (2001)

    Google Scholar 

  • Jensen, T.R., Toft, B.: Graph Coloring Problems, Wiley, New York, 1995

  • Jendrol’, S., Tuhársky, M.: A Kotzig type theorem for non orientable surfaces, Math. Slovaca 56, 245–253 (2006)

    Google Scholar 

  • Jendrol’, S., Voss, H.-J.: Light subgraphs of graphs embedded in 2-dimensional manifolds of Euler characteristics ≤ 0 – a survey, In: Paul Erdős and his Mathematics (G. Halász, L. Lovász, M. Simonovits, V.T. Sós eds.), Bolyai Society Mathematical Studies, Vol. 11, Budapest, 2002

  • Jendrol’, S., Voss, H.-J.: Light subgraphs of graphs embedded in the plane and in the projective plane – a survey, Discrete Math. (submitted)

  • Kotzig, A.: Contribution to the theory of Eulerian polyhedra, Mat. Čas. SAV (Math. Slovaca) 5, 101–113 (1955)

  • Kotzig, A.: Extremal polyhedral graphs, Ann. New York Acad. Sci. 319, 565–570 (1979)

  • Lebesgue, H.: Quelques conséquences simples de la formule d’Euler, J. Math. Pures Appl. 19, 27–43 (1940)

    Google Scholar 

  • Mohar, B.: Light paths in 4-connected graphs in the plane and other surfaces, J. Graph Theory 34, 170–179 (2000)

    Google Scholar 

  • Molloy, M., Salavatipour, M.R.: A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B 94, 189–213 (2005)

    Google Scholar 

  • Wegner, G.: Graphs with given diameter and a colouring problem (1977), Preprint, University of Dortmund

  • Wernicke, P.: Über den kartographischen Vierfarbensatz, Math. Ann. 58, 413–426 (1904)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Jendrol’.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harant, J., Jendrol’, S. On the Existence of Specific Stars in Planar Graphs. Graphs and Combinatorics 23, 529–543 (2007). https://doi.org/10.1007/s00373-007-0747-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-007-0747-7

Keywords

Mathematical Subject Classification 2000

Navigation