Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Background

Over the last several years, it has become apparent that there are critical problems with the hypothesis that brain dopamine (DA) systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Hypotheses related to DA function are undergoing a substantial restructuring, such that the classic emphasis on hedonia and primary reward is giving way to diverse lines of research that focus on aspects of instrumental learning, reward prediction, incentive motivation, and behavioral activation.

Objective

The present review discusses dopaminergic involvement in behavioral activation and, in particular, emphasizes the effort-related functions of nucleus accumbens DA and associated forebrain circuitry.

Results

The effects of accumbens DA depletions on food-seeking behavior are critically dependent upon the work requirements of the task. Lever pressing schedules that have minimal work requirements are largely unaffected by accumbens DA depletions, whereas reinforcement schedules that have high work (e.g., ratio) requirements are substantially impaired by accumbens DA depletions. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related decision making. Rats with accumbens DA depletions reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead, these rats select a less-effortful type of food-seeking behavior.

Conclusions

Along with prefrontal cortex and the amygdala, nucleus accumbens is a component of the brain circuitry regulating effort-related functions. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue, or anergia in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Several authors have made distinctions between aspects of motivated behavior that are dissociated by dopaminergic manipulations (e.g., activational vs directional, Salamone 1988; preparatory vs consummatory, Blackburn et al. 1989; instrumental vs consummatory, Salamone 1991; anticipatory vs consummatory, Ikemoto and Panksepp 1996; Burgdorf and Panksepp 2006; ethanol seeking vs ethanol intake, Czakowski et al. 2002; anticipatory vs hedonic, Barbano and Cador 2007).

References

  • Aberman JE, Salamone JD (1999) Nucleus accumbens dopamine depletions make rats more sensitive to high ratio requirements but do not impair primary food reinforcement. Neuroscience 92:545–552

    PubMed  CAS  Google Scholar 

  • Aberman JE, Ward SJ, Salamone JD (1998) Effects of dopamine antagonists and accumbens dopamine depletions on time-constrained progressive-ratio performance. Pharmacol Biochem Behav 61:341–348

    PubMed  CAS  Google Scholar 

  • Aharon I, Becerraa L, Chabris CF, Borsooka D (2006) Noxious heat induces fMRI activation in two anatomically distinct clusters within the nucleus accumbens. Neurosci Lett 392:159–164

    PubMed  CAS  Google Scholar 

  • Ahn S, Phillips AG (2007) Dopamine efflux in the nucleus accumbens during within-session extinction, outcome-dependent, and habit-based instrumental responding for food reward. Psychopharmacology (in this issue)

  • Anstrom KK, Woodward DJ (2005) Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:1832–1840

    PubMed  CAS  Google Scholar 

  • Aparicio C (2003a) Efectos del haloperidol en un medio ambiente de reforzamiento variable. Rev Mex Anâl Conducta 29:169–190

    Google Scholar 

  • Aparicio C (2003b) El haloperidol afecta la elección y cambia la preferencia: el Paradigma de Elección con Barrera. Rev Mex Anâl Conducta 29:33–63

    Google Scholar 

  • Austin MC, Kalivas PW (1990) Enkephalinergic and GABAergic modulation of motor activity in the ventral pallidum. J Pharmacol Exp Ther 252:1370–1377

    PubMed  CAS  Google Scholar 

  • Bakshi VP, Kelley AE (1991) Dopaminergic regulation of feeding behavior: I. Differential effects of haloperidol microinjection in three striatal subregions. Psychobiology 19:223–232

    CAS  Google Scholar 

  • Baldo BA, Kelley AE (2007) Distinct neurochemical coding of discrete motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (submitted)

  • Baldo BA, Sadeghian K, Basso AM, Kelley AE (2002) Effects of selective dopamine D1 or D2 receptor blockade within nucleus accumbens subregions on ingestive behavior and associated motor activity. Behav Brain Res 137:165–177

    PubMed  CAS  Google Scholar 

  • Barbano MF, Cador M (2006) Differential regulation of the consummatory, motivational and anticipatory aspects of feeding behavior by dopaminergic and opioidergic drugs. Neuropsychopharmacol 31:1371–1381

    CAS  Google Scholar 

  • Barbano MF, Cador M (2007) Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology (in this issue)

  • Barnes TD, Kubota Y, Hu D, Jin DZ, Graybiel AM (2005) Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature 437:1158–1161

    PubMed  CAS  Google Scholar 

  • Barrett LF (2006) Are emotions natural kinds? Persp Psychol Sci 1:28–58

    Google Scholar 

  • Bartoshuk AK (1971) Motivation. In: Kling JW, Riggs LA (eds) Woodworth & Schlosberg’s experimental psychology. Holt, Rinehart and Winston, New York, pp 793–846

    Google Scholar 

  • Baum WM, Rachlin HC (1969) Choice as time allocation. J Exp Anal Behav 12:861–874

    PubMed  CAS  Google Scholar 

  • Bench CJ, Friston KJ, Brown RG, Frackowiak RS, Dolan RJ (1993) Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 23:579–590

    Article  PubMed  CAS  Google Scholar 

  • Beninger RJ, Gerdjikov T (2004) The role of signaling molecules in reward-related incentive learning. Neurotox Res 6:91–104

    PubMed  Google Scholar 

  • Berridge KC (2000) Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 24:173–198

    PubMed  CAS  Google Scholar 

  • Berridge KC (2007) What does dopamine do for reward today? Psychopharmacology (in this issue)

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28:309–369

    PubMed  CAS  Google Scholar 

  • Berridge KC, Venier IL, Robinson TE (1989) Taste reactivity analysis of 6-hydroxydopamine-induced aphagia: implications for arousal and anhedonia hypotheses of dopamine function. Behav Neurosci 103:36–45

    PubMed  CAS  Google Scholar 

  • Bickel WK, Marsch LA, Carroll ME (2000) Deconstructing relative reinforcing efficacy and situating the measures of pharmacological reinforcement with behavioral economics: a theoretical proposal. Psychopharmacology (Berl) 153:44–56

    CAS  Google Scholar 

  • Blackburn JR, Phillips AG, Fibiger HC (1989) Dopamine and preparatory behavior: III. Effects of metoclopramide and thioridazine. Behav Neurosci 103:903–906

    PubMed  CAS  Google Scholar 

  • Blazquez PM, Fujii N, Kojima J, Graybiel AM (2002) A network representation of response probability in the striatum. Neuron 33:973–982

    PubMed  CAS  Google Scholar 

  • Blundell JE (1987) Structure, process and mechanism: case studies in the psychopharmacology of feeding. In: Iverson LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum, New York, pp 123–182

    Google Scholar 

  • Bowers W, Hamilton M, Zacharko RM, Anisman H (1985) Differential effects of pimozide on response-rate and choice accuracy in a self-stimulation paradigm in mice. Pharmacol Biochem Behav 22:521–526

    PubMed  CAS  Google Scholar 

  • Brauer LH, De Wit H (1997) High dose pimozide does not block amphetamine-induced euphoria in normal volunteers. Pharmacol Biochem Behav 56:265–272

    PubMed  CAS  Google Scholar 

  • Brody AL, Barsom MW, Bota RG, Saxena S (2001a) Prefrontal-subcortical and limbic circuit mediation of major depressive disorder. Semin Clin Neuropsychiatry 6:102–112

    PubMed  CAS  Google Scholar 

  • Brody AL, Saxena S, Mandelkern MA, Fairbanks LA, Ho ML, Baxter LR (2001b) Brain metabolic changes associated with symptom factor improvement in major depressive disorder. Biol Psychiatry 50:171–178

    PubMed  CAS  Google Scholar 

  • Brog JS, Salyapongse A, Deutch AY, Zahm DS (1993) The patterns of afferent innervation of the core and shell in the accumbens part of the rat ventral striatum-Immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol 338:255–278

    PubMed  CAS  Google Scholar 

  • Brown AS, Gershon S (1993) Dopamine and depression. J Neural Transm Gen Sect 91:75–109

    PubMed  CAS  Google Scholar 

  • Burgdorf J, Panksepp J (2006) The neurobiology of positive emotions. Neurosci Biobehav Rev 30:173–187

    PubMed  Google Scholar 

  • Caine SB, Koob GF (1994) Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. J Exp Anal Behav 61:213–221

    PubMed  CAS  Google Scholar 

  • Cagniard B, Balsam PD, Brunner D, Zhuang X (2006) Mice with chronically elevated dopamine exhibit enhanced motivation, but not learning, for a food reward. Neuropsychopharmacol 31:1362–1370

    CAS  Google Scholar 

  • Caligiuri MP, Ellwanger J (2000) Motor and cognitive aspects of motor retardation in depression. J Affect Disord 57:83–93

    PubMed  CAS  Google Scholar 

  • Campbell JJ, Duffy JD (1997) Treatment strategies in amotivated patients. Psychiatr Ann 27:44–49

    Google Scholar 

  • Cannon CM, Bseikri MR (2004) Is dopamine required for natural reward? Physiol Behav 81:741–748

    PubMed  CAS  Google Scholar 

  • Cardinal RN, Robbins TW, Everitt BJ (2000) The effects of d-amphetamine, chlordiazepoxide, alpha-flupenthixol and behavioural manipulations on choice of signalled and unsignalled delayed reinforcement in rats. Psychopharmacology (Berl) 152:362–375

    CAS  Google Scholar 

  • Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26:321–352

    PubMed  Google Scholar 

  • Caul WF, Brindle NA (2001) Schedule-dependent effects of haloperidol and amphetamine: multiple-schedule task shows within-subject effects. Pharmacol Biochem Behav 68:53–63

    PubMed  CAS  Google Scholar 

  • Chen JF, Moratalla R, Impagnatiello F, Grandy DK, Cuellar B, Rubinstein M, Beilstein MA, Hacket E, Fink JS, Low MJ, Ongini E, Schwarzschild MA (2001) The role of the D2 dopamine receptor (D2R) in A2a adenosine-receptor (A2aR) mediated behavioral and cellular responses as revealed by A2a and D2 receptor knockout mice. Proc Natl Acad Sci 98:1970–1975

    PubMed  CAS  Google Scholar 

  • Chevrette J, Stellar JR, Hesse GW, Markou A (2002) Both the shell of the nucleus accumbens and the central nucleus of the amygdala support amphetamine self-administration in rats. Pharmacol Biochem Behav 71:501–507

    PubMed  CAS  Google Scholar 

  • Choi WY, Balsam PD, Horvitz JC (2005) Extended habit training reduces dopamine mediation of appetitive response expression. J Neurosci 25:6729–6733

    PubMed  CAS  Google Scholar 

  • Clifton PG (2000) Meal patterning in rodents: psychopharmacological and neuroanatomical studies. Neurosci Biobehav Rev 24:213–222

    PubMed  CAS  Google Scholar 

  • Clifton PG, Rusk IN, Cooper SJ (1991) Effects of dopamine D1 and dopamine D2 antagonists on the free feeding and drinking patterns of rats. Behav Neurosci 105:272–281

    PubMed  CAS  Google Scholar 

  • Cofer CN, Appley MH (1964) Motivation: theory and research. Wiley, New York

    Google Scholar 

  • Colby CR, Whisler K, Steffen C, Nestler EJ, Self DW (2003) Striatal cell type-specific overexpression of DeltaFosB enhances incentive for cocaine. J Neurosci 23:2488–2493

    PubMed  CAS  Google Scholar 

  • Collier GH, Jennings W (1969) Work as a determinant of instrumental performance. J Comp Physiol Psychol 68:659–662

    Google Scholar 

  • Corcoran C, Wong ML, O’Keane V (2004) Bupropion in the management of apathy. J Psychopharmacol 18:133–135

    PubMed  CAS  Google Scholar 

  • Correa M, Carlson BB, Wisniecki A, Salamone JD (2002) Nucleus accumbens dopamine and work requirements on interval schedules. Behav Brain Res 137:179–187

    PubMed  CAS  Google Scholar 

  • Correa M, Salamone JD (2006) Implicación del componente hedónico en el uso y abuso de drogas. In J. Juarez (ed) Neurobiología del Hedonismo en la Conducta. Mexico City: Manual Moderno (in press)

  • Cousins MS, Salamone JD (1994) Nucleus accumbens dopamine depletions in rats affect relative response allocation in a novel cost/benefit procedure. Pharmacol Biochem Behav 49:85–91

    PubMed  CAS  Google Scholar 

  • Cousins MS, Sokolowski JD, Salamone JD (1993) Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacol Biochem Behav 46:943–951

    PubMed  CAS  Google Scholar 

  • Cousins MS, Wei W, Salamone JD (1994) Pharmacological characterization of performance on a concurrent lever pressing/feeding choice procedure: effects of dopamine antagonist, cholinomimetic, sedative and stimulant drugs. Psychopharmacology (Berl) 116:529–537

    CAS  Google Scholar 

  • Cousins MS, Atherton A, Turner L, Salamone JD (1996) Nucleus accumbens dopamine depletions alter relative response allocation in a T-maze cost/benefit task. Behav Brain Res 74:189–197

    PubMed  CAS  Google Scholar 

  • Cousins MS, Trevitt J, Atherton A, Salamone JD (1999) Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: a microdialysis and behavioral investigation. Neuroscience 91:925–934

    PubMed  CAS  Google Scholar 

  • Czachowski CL, Santini LA, Legg BH, Samson HH (2002) Separate measures of ethanol seeking and drinking in the rat: effects of remoxipride. Alcohol 28:39–46

    PubMed  CAS  Google Scholar 

  • Das S, Fowler SC (1996) An update of Fowler and Das: anticholinergic reversal of haloperidol-induced, within-session decrements in rats’ lapping behavior. Pharmacol Biochem Behav 53:853–855

    PubMed  CAS  Google Scholar 

  • Datla KP, Ahier RG, Young AM, Gray JA, Joseph MH (2002) Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. Eur J Neurosci 16:1987–1993

    PubMed  CAS  Google Scholar 

  • Day JJ, Wheeler RA, Roitman MF, Carelli RM (2006) Nucleus accumbens neurons encode Pavlovian approach behaviors: evidence from an autoshaping paradigm. Eur J Neurosci 23:1341–1351

    PubMed  Google Scholar 

  • Delfs JM, Schreiber L, Kelley AE (1990) Microinjection of cocaine into the nucleus accumbens elicits locomotor activation in the rat. J Neurosci 10:303–310

    PubMed  CAS  Google Scholar 

  • Demyttenaere K, De Fruyt J, Stahl SM (2005) The many faces of fatigue in major depressive disorder. Int J Neuropsychopharmacol 8:93–105

    PubMed  Google Scholar 

  • Di Chiara G (2002) Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav Brain Res 137:75–114

    PubMed  Google Scholar 

  • Di Ciano P, Cardinal RN, Cowell RA, Little SJ, Everitt BJ (2001) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J Neurosci 21:9471–9477

    PubMed  Google Scholar 

  • Dickinson A, Balleine B (1994) Motivational control of goal-directed action. Anim Learn Behav 22:1–18

    Google Scholar 

  • Dinsmoor JA (2004) The etymology of basic concepts in the experimental analysis of behavior. J Exp Anal Behav 82:311–316

    PubMed  Google Scholar 

  • Duffy E (1963) Activation and Behavior. Wiley, New York

    Google Scholar 

  • Dunnett SB, Iversen SD (1982) Regulatory impairments following selective 6-OHDA lesions of the neostriatum. Behav Brain Res 4:195–202

    PubMed  CAS  Google Scholar 

  • Ettenberg A, Koob GF, Bloom FE (1981) Response artifact in the measurement of neuroleptic-induced anhedonia. Science 213:357–359

    PubMed  CAS  Google Scholar 

  • Evenden JL, Robbins TW (1983) Dissociable effects of d-amphetamine, chlordiazepoxide and alpha-flupenthixol on choice and rate measures of reinforcement in the rat. Psychopharmacology (Berl) 79:180–186

    CAS  Google Scholar 

  • Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8:1481–1489

    PubMed  CAS  Google Scholar 

  • Everitt BJ, Parkinson JA, Olmstead MC, Arroyo M, Robledo P, Robbins TW (1999) Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Ann NY Acad Sci 877:412–438

    PubMed  CAS  Google Scholar 

  • Falk JL (1971) The nature and determinants of adjunctive behavior. Physiol Behav 6:577–588

    PubMed  CAS  Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the basal forebrain and neostriatum. J Comp Neurol 180:545–580

    PubMed  CAS  Google Scholar 

  • Farrar AM, Vontell R, Ramos R, Mingote S, Salamone JD (2005) Forebrain circuitry involved in effort-related decision making: ventral pallidal GABA receptor stimulation alters response allocation in food-seeking behavior Program No. 891.17.2005 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, Online.

  • Farrar AM, Pereira M, Velasco F, Hockemeyer J, Müller CE, Salamone JD (2007) Adenosine A2A receptor antagonism reverses the effects of dopamine receptor antagonism on instrumental output and effort-related choice in the rat. Implications for studies of psychomotor slowing. Psychopharmacology (in this issue)

  • Ferré S, Freidholm BB, Morelli M, Popoli P, Fuxe K (1997) Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 20:482–487

    PubMed  Google Scholar 

  • Ferré S, Popoli P, Gimenez-Llort L, Rimondini R, Müller CE, Stromberg I, Orgen O, Fuxe K (2001) Adenosine/dopamine interaction: implications for the treatment of Parkinson’s disease. Parkinson Rel Disord 7:235–241

    Google Scholar 

  • Fibiger HC, Carter DA, Phillips AG (1976) Decreased intracranial self-stimulation after neuroleptics or 6-hydroxydopamine: evidence for mediation by motor deficits rather than by reduced reward. Psychopharmacology (Berl) 47:21–27

    CAS  Google Scholar 

  • Flint AJ, Black SE, Campbell-Taylor I, Gailey GF, Levinton C (1993) Abnormal speech articulation, psychomotor retardation, and subcortical dysfunction in major depression. J Psychiatr Res 27:309–319

    PubMed  CAS  Google Scholar 

  • Floresco SB, Ghods-Sharifi S (2006) Amygdala-prefrontal cortical circuitry regulates effort-based decision making. Cereb Cortex (in press)

  • Font-Hurtado L, Farrar AM, Mingote S, Salamone JD (2006) Forebrain circuitry involved in effort-related decision-making: injections of GABAA agonist muscimol into ventral pallidum, but not a dorsal control site, alters response allocation in food-seeking behavior. Program No. 71.13.2006 Abstract Viewer/Itinerary Planner. Washington, DC: Society for Neuroscience, Online

  • Fowler SC, Mortell C (1992) Low doses of haloperidol interfere with rat tongue extensions during licking: a quantitative analysis. Behav Neurosci 106:386–395

    PubMed  CAS  Google Scholar 

  • Fowler SC, LaCerra MM, Ettenberg A (1986) Effects of haloperidol on the biophysical characteristics of operant responding: implications for motor and reinforcement processes. Pharmacol Biochem Behav 25:791–796

    PubMed  CAS  Google Scholar 

  • Gardner EL (1992) Brain reward mechanisms. In: Lowinson JH, Ruiz P, Millman RB (eds) Substance abuse. Williams and Wilkins, New York, pp 70–99

    Google Scholar 

  • Gardner EL (2005) Endocannabinoid signaling system and brain reward: emphasis on dopamine. Pharmacol Biochem Behav 81:263–284

    PubMed  CAS  Google Scholar 

  • Gawin FH (1986) Neuroleptic reduction of cocaine-induced paranoia but not euphoria? Psychopharmacology (Berl) 90:142–143

    CAS  Google Scholar 

  • Graybiel AM (1998) The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem 70:119–136

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal, hypothalamic, and mesencephalic structures: a tracing and immunohistochemistry study. J Comp Neurol 223:347–367

    PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AV (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    Article  PubMed  CAS  Google Scholar 

  • Guarraci FA, Kapp BS (1999) An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav Brain Res 99:169–179

    PubMed  CAS  Google Scholar 

  • Gunne LM, Anggard E, Jonsson LE (1972) Clinical trials with amphetamine-blocking drugs. Psychiatr Neurol Neurochir 75:225–226

    PubMed  CAS  Google Scholar 

  • Haney M, Ward AS, Foltin RW, Fischman MW (2001) Effects of ecopipam, a selective dopamine D1 antagonist, on smoked cocaine self-administration by humans. Psychopharmacology (Berl) 155:330–337

    CAS  Google Scholar 

  • Hauber W, Neuscheler P, Nagel J, Müller CE (2001) Catalepsy induced by a blockade of dopamine D1 or D2 receptors was reversed by a concomitant blockade of adenosine A2a receptors in the caudate putamen of rats. Eur J Neurosci 14:1287–1293

    PubMed  CAS  Google Scholar 

  • Hettinger BD, Lee A, Linden J, Rosin DL (2001) Ultrastructural localization of adenosine A2A receptors suggests multiple cellular sites for modulation of GABAergic neurons in rat striatum. J Comp Neurol 431:331–346

    PubMed  CAS  Google Scholar 

  • Hickie I, Ward P, Scott E, Haindl W, Walker B, Dixon J, Turner K (1999) Neo-striatal rCBF correlates of psychomotor slowing in patients with major depression. Psychiatry Res 92:75–81

    PubMed  CAS  Google Scholar 

  • Higgins ET (2006) Value from hedonic experience and engagement. Psychol Rev 113:439–460

    PubMed  Google Scholar 

  • Hockemeyer J, Burbiel JC, Müller CE (2004) Multigram-scale syntheses, stability, and photoreactions of A2A adenosine receptor antagonists with 8-styrylxanthine structure: potential drugs for Parkinson’s disease. J Org Chem 69:3308–3318

    Google Scholar 

  • Hooks MS, Kalivas PW (1995) The role of mesoaccumbens-pallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597

    PubMed  CAS  Google Scholar 

  • Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96:651–656

    PubMed  CAS  Google Scholar 

  • Horvitz JC, Richardson WB, Ettenberg A (1993) Dopamine receptor blockade and reductions in thirst produce differential effects on drinking behavior. Pharmacol Biochem Behav 45:725–728

    PubMed  CAS  Google Scholar 

  • Hsiao S, Chen BH (1995) Complex response competition and dopamine blocking: choosing of high cost sucrose solution versus low cost water in rats. Chin J Physiol 38:99–109

    PubMed  CAS  Google Scholar 

  • Huang AC, Hsiao S (2002) Haloperidol attenuates rewarding and aversively conditioned suppression of saccharin solution intake: reevaluation of the anhedonia hypothesis of dopamine blocking. Behav Neurosci 116:646–650

    PubMed  CAS  Google Scholar 

  • Hursh SR, Raslear TG, Shurtleff D, Bauman R, Simmons L (1988) A cost-benefit analysis of demand for food. J Exp Anal Behav 50:419–440

    PubMed  CAS  Google Scholar 

  • Hull EM, Weber MS, Eaton RC, Dua R, Markowski VP, Lumley L, Moses J (1991) Dopamine receptors in the ventral tegmental area affect motor, but not motivational or reflexive, components of copulation in male rats. Brain Res 554:72–76

    PubMed  CAS  Google Scholar 

  • Ikemoto S, Panksepp J (1996) Dissociations between appetitive and consumatory response by pharmocological manipulations of reward-relevant brain regions. Behav Neurosci 110:331–345

    PubMed  CAS  Google Scholar 

  • Ishiwari K, Weber SM, Mingote S, Correa M, Salamone JD (2004) Accumbens dopamine and the regulation of effort in food-seeking behavior: modulation of work output by different ratio or force requirements. Behav Brain Res 151:83–91

    PubMed  CAS  Google Scholar 

  • Jenner P (2003) A2A antagonists as novel non-dopaminergic therapy for motor dysfunction in PD. Neurology 61:S32–38

    Google Scholar 

  • Jenner P (2005) Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson’s disease. Exp Opin Investig Drugs 14:729–738

    Google Scholar 

  • Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S (2003) Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron 40:1251–1257

    PubMed  CAS  Google Scholar 

  • Jicha GA, Salamone JD (1991) Vacuous jaw movements and feeding deficits in rats with ventrolateral striatal dopamine depletion: possible relation to parkinsonian symptoms. J Neurosci 11:3822–3829

    PubMed  CAS  Google Scholar 

  • Jones DL, Mogenson GJ (1979) Oral motor performance following central dopamine receptor blockade. Eur J Pharmacol 59:11–21

    PubMed  CAS  Google Scholar 

  • Keedwell PA, Andrew C, Williams SC, Brammer MJ, Phillips ML (2005) The neural correlates of anhedonia in major depressive disorder. Biol Psychiatry 58:843–853

    PubMed  Google Scholar 

  • Kelley AE (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev 27:765–776

    PubMed  Google Scholar 

  • Kelly PH, Seviour PW, Iversen SD (1975) Amphetamine and apomorphine responses in the rat following 6-OHDA lesions of the nucleus accumbens septi and corpus striatum. Brain Res 94:507–522

    PubMed  CAS  Google Scholar 

  • Kelley AE, Baldo BA, Pratt WE, Will MJ (2005) Corticostriatal-hypothalamic circuitry and food motivation: integration of energy, action and reward. Physiol Behav 86:773–795

    PubMed  CAS  Google Scholar 

  • Killcross AS, Everitt BJ, Robins TW (1997) Symmetrical effects of amphetamine and alpha-flupenthixol on conditioned punishment and conditioned reinforcement: contrasts with midazolam. Psychopharmacology (Berl) 129:141–152

    CAS  Google Scholar 

  • Killeen PR (1975) On the temporal control of behavior. Psychol Rev 82:89–115

    Google Scholar 

  • Killeen PR, Hanson SJ, Osborne SR (1978) Arousal: its genesis and manifestation as response rate. Psychol Rev 85:571–581

    PubMed  CAS  Google Scholar 

  • Knutson B, Fong GW, Adams CM, Varner JL, Hommer D (2001) Dissociation of reward anticipation and outcome with event-related fMRI. Neuroreport 12:3683–3687

    PubMed  CAS  Google Scholar 

  • Knutson B, Fong GW, Bennett SM, Adams CM, Hommer D (2003) A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. Neuroimage 18:263–272

    PubMed  Google Scholar 

  • Koch M, Schmid A, Schnitzler HU (2000) Role of nucleus accumbens dopamine D1 and D2 receptors in instrumental and Pavlovian paradigms of conditioned reward. Psychopharmacology (Berl) 152:67–73

    CAS  Google Scholar 

  • Koob GF, Swerdlow NR (1988) The functional output of the mesolimbic dopamine system. Ann NY Acad Sci 537:216–227

    PubMed  CAS  Google Scholar 

  • Koob GF, Riley SJ, Smith SC, Robbins TW (1978) Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psychol 92:917–927

    PubMed  CAS  Google Scholar 

  • Krebs JR (1977) Optimal foraging: theory and experiment. Nature 268:583–584

    Google Scholar 

  • Kretschmer BD (2000) Functional aspects of the ventral pallidum. Amino Acids 19:201–210

    PubMed  CAS  Google Scholar 

  • Kuhn TS (1962) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Lapish CC, Kroener S, Durstewitz D, Lavin A, Seamans JK (2007) The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology (in this issue)

  • Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK (2005) Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 25:5013–5023

    PubMed  CAS  Google Scholar 

  • Lea SEG (1978) The psychology and economics of demand. Psychol Bull 85:441–466

    Google Scholar 

  • Leyton M, Casey KF, Delaney JS, Kolivakis T, Benkelfat C (2005) Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behav Neurosci 119:1619–1627

    PubMed  CAS  Google Scholar 

  • Li M, Parkes J, Fletcher PJ, Kapur S (2004) Evaluation of the motor initiation hypothesis of APD-induced conditioned avoidance decreases. Pharmacol Biochem Behav 78:811–819

    PubMed  CAS  Google Scholar 

  • Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S, Koeppe RA, Fig LM (1999) Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry 45:817–826

    PubMed  CAS  Google Scholar 

  • Lindsley DB (1951) Emotion. In: Stevens SS (ed) Handbook of experimental psychology. Wiley, New York, pp 473–516

    Google Scholar 

  • Ljungberg T (1987) Blockade by neuroleptics of water intake and operant responding for water in the rat: anhedonia, motor deficit, or both? Pharmacol Biochem Behav 27:341–350

    PubMed  CAS  Google Scholar 

  • Ljungberg T (1988) Scopolamine reverses haloperidol-attenuated lever-pressing for water but not haloperidol-attenuated water intake in the rat. Pharmacol Biochem Behav 29:205–208

    PubMed  CAS  Google Scholar 

  • Ljungberg T (1990) Differential attenuation of water intake and water-rewarded operant responding by repeated administration of haloperidol and SCH 23390 in the rat. Pharmacol Biochem Behav 35:111–115

    PubMed  CAS  Google Scholar 

  • Lopez-Crespo G, Rodriguez M, Pellon R, Flores P (2004) Acquisition of schedule-induced polydipsia by rats in proximity to upcoming food delivery. Learn Behav 32:491–499

    PubMed  Google Scholar 

  • Luria AR (1969) Human brain and psychological processes. In: Pribram KH (ed) Brain and behavior 1 mood, states and mind. Penguin, Baltimore, MD, pp 37–53

    Google Scholar 

  • Marin RS (1996) Apathy: concept, syndrome, neural mechanisms, and treatment. Semin Clin Neuropsychiatry 1:304–314

    PubMed  Google Scholar 

  • Marinelli M, Barrot M, Simon H, Oberlander C, Dekeyne A, Le Moal M, Piazza PV (1998) Pharmacological stimuli decreasing nucleus accumbens dopamine can act as positive reinforcers but have a low addictive potential. Eur J Neurosci 10:3269–3275

    PubMed  CAS  Google Scholar 

  • Marinelli S, Pascucci T, Bernardi G, Puglisi-Allegra S, Mercuri NB (2005) Activation of TRPV1 in the VTA excites dopaminergic neurons and increases chemical- and noxious-induced dopamine release in the nucleus accumbens. Neuropsychopharmacology 30:864–870

    PubMed  CAS  Google Scholar 

  • Martin-Iverson MT, Wilkie D, Fibiger HC (1987) Effects of haloperidol and d-amphetamine on perceived quantity of food and tones. Psychopharmacology (Berl) 93:374–381

    CAS  Google Scholar 

  • Matsumoto N, Hanakawa T, Maki S, Graybiel AM, Kimura M (1999) Role of nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. J Neurophysiol 82:978–998

    PubMed  CAS  Google Scholar 

  • McCullough LD, Salamone JD (1992) Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: a microdialysis and behavioral study. Brain Res 592:29–36

    PubMed  CAS  Google Scholar 

  • McCullough LD, Cousins MS, Salamone JD (1993a) The role of nucleus accumbens dopamine in responding on a continuous reinforcement operant schedule: a neurochemical and behavioral study. Pharmacol Biochem Behav 46:581–586

    PubMed  CAS  Google Scholar 

  • McCullough LD, Sokolowski JD, Salamone JD (1993b) A neurochemical and behavioral investigation of the involvement of nucleus accumbens dopamine in instrumental avoidance. Neuroscience 52:919–925

    PubMed  CAS  Google Scholar 

  • McDonald AJ (1991) Organization of amygaloid projections to the prefrontal cortex and associated striatum. Neuroscience 44:1–14

    PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Winston KM, Limebeer CL, Parker LA, Makriyannis A, Salamone JD (2005) The cannabinoid CB1 antagonist AM 251 produces food avoidance and behaviors associated with nausea but does not impair feeding efficiency in rats. Psychopharmacology (Berl) 180:286–293

    CAS  Google Scholar 

  • Meredith GE, Agolia R, Arts MPM, Groenewegen HJ, Zahm DS (1992) Morphological differences between projection neurons of the core and shell in the nucleus accumbens of the rat. Neuroscience 50:149–162

    PubMed  CAS  Google Scholar 

  • Mingote S, Weber SM, Ishiwari K, Correa M, Salamone JD (2005) Ratio and time requirements on operant schedules: effort-related effects of nucleus accumbens dopamine depletions. Eur J Neurosci 21:1749–1757

    Article  PubMed  Google Scholar 

  • Mittleman G, Whishaw IQ, Jones GH, Koch M, Robbins TW (1990) Cortical, hippocampal, and striatal mediation of schedule-induced behaviors. Behav Neurosci 104:399–409

    PubMed  CAS  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    PubMed  CAS  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. EEG Clin Neurophysiol 1:455–473

    CAS  Google Scholar 

  • Muscat R, Willner P (1989) Effects of dopamine receptor antagonists on sucrose consumption and preference. Psychopharmacology (Berl) 99:98–102

    CAS  Google Scholar 

  • Nadal R, Armario A, Janak PH (2002) Positive relationship between activity in a novel environment and operant ethanol self-administration in rats. Psychopharmacology 162:333–338

    PubMed  CAS  Google Scholar 

  • Nader K, Bechara A, van der Kooy D (1997) Neurobiological constraints on behavioral models of motivation. Annu Rev Psychol 48:85–114

    PubMed  CAS  Google Scholar 

  • Nann-Vernotica E, Donny EC, Bigelow GE, Walsh SL (2001) Repeated administration of the D1/5 antagonist ecopipam fails to attenuate the subjective effects of cocaine. Psychopharmacology (Berl) 155:338–347

    CAS  Google Scholar 

  • Nauta WJ, Smith JP, Faull RL, Domesick VB (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401

    PubMed  CAS  Google Scholar 

  • Neill DB, Herndon JG Jr (1978) Anatomical specificity within rat striatum for the dopaminergic modulation of DRL responding and activity. Brain Res 153:529–538

    PubMed  CAS  Google Scholar 

  • Niv Y, Daw ND, Joel D, Dayan P (2007) Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (in this issue)

  • Nowend KL, Arizzi M, Carlson BB, Salamone JD (2001) D1 or D2 antagonism in nucleus accumbens core or dorsomedial shell suppresses lever pressing for food but leads to compensatory increases in chow consumption. Pharmacol Biochem Behav 69:373–382

    PubMed  CAS  Google Scholar 

  • Numan M, Numan MJ, Pliakou N, Stolzenberg DS, Mullins OJ, Murphy JM, Smith CD (2005) The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 119:1588–1604

    PubMed  CAS  Google Scholar 

  • O’Doherty JP, Deichmann R, Critchley HD, Dolan RJ (2002) Neural responses during anticipation of a primary taste reward. Neuron 33:815–826

    PubMed  CAS  Google Scholar 

  • O’Neill M, Brown VJ (2006) The effect of the adenosine A(2A) antagonist KW-6002 on motor and motivational processes in the rat. Psychopharmacology 184:46–55

    PubMed  CAS  Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    PubMed  CAS  Google Scholar 

  • Paredes RG, Agmo A (2004) Has dopamine a physiological role in the control of sexual behavior? A critical review of the evidence. Prog Neurobiol 73:179–226

    PubMed  CAS  Google Scholar 

  • Parkinson JA, Dalley JW, Cardinal RN, Bamford A, Fehnert B, Lachenal G, Rudarakanchana N, Halkerston KM, Robbins TW, Everitt BJ (2002) Nucleus accumbens dopamine depletion impairs both acquisition and performance of appetitive Pavlovian approach behaviour: implications for mesoaccumbens dopamine function. Behav Brain Res 137:149–163

    PubMed  CAS  Google Scholar 

  • Paul RH, Brickman AM, Navia B, Hinkin C, Malloy PF, Jefferson AL, Cohen RA, Tate DF, Flanigan TP (2005) Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. J Neuropsych Clin Neurosci 17:167–171

    Google Scholar 

  • Pereira M, Uriarte N, Agrati D, Zuluaga MJ, Ferreira A (2005) Motivational aspects of maternal anxiolysis in lactating rats. Psychopharmacology (Berl) 180:241–248

    CAS  Google Scholar 

  • Peterson RL (2005) The neuroscience of investing: fMRI of the reward system. Brain Res Bull 67:391–397

    PubMed  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    PubMed  CAS  Google Scholar 

  • Phan KL, Taylor SF, Welsh RC, Ho SH, Britton JC, Liberzon I (2004) Neural correlates of individual ratings of emotional salience: a trial-related fMRI study. Neuroimage 21:768–780

    PubMed  Google Scholar 

  • Phillips PE, Walton ME, Jhou TC (2007) Calculating utility: preclinical evidence for cost-benefit analysis by mesolimbic dopamine. Psychopharmacology (in this issue)

  • Pijnenburg AJ, Honig WM, Van Rossum JM (1975) Inhibition of d-amphetamine-induced locomotor activity by injection of haloperidol into the nucleus accumbens of the rat. Psychopharmacologia 41:87–95

    PubMed  CAS  Google Scholar 

  • Pinna A, Wardas J, Simola N, Morelli M (2005) New therapies for the treatment of Parkinson’s disease: adenosine A2A receptor antagonists. Life Sci 77:3259–3267

    Google Scholar 

  • Pisa M, Schranz JA (1988) Dissociable motor roles of the rat’s striatum conform to a somatotopic model. Behav Neurosci 102:429–440

    PubMed  CAS  Google Scholar 

  • Pruessner JC, Champagne F, Meaney MJ, Dagher A (2004) Dopamine release in response to a psychological stress in humans and its relationship to early life maternal care: a positron emission tomography study using [11C]raclopride. J Neurosci 24:2825–2831

    PubMed  CAS  Google Scholar 

  • Rampello L, Nicoletti G, Raffaele R (1991) Dopaminergic hypothesis for retarded depression: a symptom profile for predicting therapeutical responses. Acta Psychiatr Scand 84:552–554

    PubMed  CAS  Google Scholar 

  • Redgrave P, Gurney K (2006) The short-latency dopamine signal: a role in discovering novel actions? Nat Rev Neurosci 7:967–975

    PubMed  CAS  Google Scholar 

  • Rick JH, Horvitz JC, Balsam PD (2006) Dopamine receptor blockade and extinction differentially affect behavioral variability. Behav Neurosci 120:488–492

    PubMed  CAS  Google Scholar 

  • Robbins TW, Everitt B (2007) A role for mesencephalic dopamine in activation: a commentary on Berridge (2007). Psychopharmacology (in this issue)

  • Robbins TW, Koob GF (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285:409–412

    PubMed  CAS  Google Scholar 

  • Robbins TW, Roberts DC, Koob GF (1983) Effects of d-amphetamine and apomorphine upon operant behavior and schedule-induced licking in rats with 6-hydroxydopamine-induced lesions of the nucleus accumbens. J Pharmacol Exp Ther 224:662–673

    PubMed  CAS  Google Scholar 

  • Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol Biochem Behav 6:615–620

    PubMed  CAS  Google Scholar 

  • Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD (2005) Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 119:5–15

    PubMed  CAS  Google Scholar 

  • Roitman MF, Stuber GD, Phillips PE, Wightman RM, Carelli RM (2004) Dopamine operates as a subsecond modulator of food seeking. J Neurosci 24:1265–1271

    PubMed  CAS  Google Scholar 

  • Rogers D, Lees AJ, Smith E, Trimble M, Stern GM (1987) Bradyphrenia in Parkinson’s disease and psychomotor retardation in depressive illness. An experimental study. Brain 110(Pt 3):761–776

    PubMed  Google Scholar 

  • Rolls ET, Rolls BJ, Kelly PH, Shaw SG, Wood RJ, Dale R (1974) The relative attenuation of self-stimulation, eating and drinking produced by dopamine-receptor blockade. Psychopharmacologia 38:219–230

    PubMed  CAS  Google Scholar 

  • Rubio-Chevannier H, Bach-Y-Rita G, Penaloza-Rojas J, Hernandez-Peon R (1961) Potentiating action of imipramine upon “reticular arousal”. Exp Neurol 4:214–220

    PubMed  CAS  Google Scholar 

  • Rushworth MF, Walton ME, Kennerley SW, Bannerman DM (2004) Action sets and decisions in the medial frontal cortex. Trends Cogn Sci 8:410–417

    PubMed  CAS  Google Scholar 

  • Rusk IN, Cooper SJ (1994) Parametric studies of selective D1 or D2 antagonists: effects on appetitive and feeding behaviour. Behav Pharmacol 5:615–622

    PubMed  CAS  Google Scholar 

  • Salamone JD (1986) Different effects of haloperidol and extinction on instrumental behaviours. Psychopharmacology (Berl) 88:18–23

    CAS  Google Scholar 

  • Salamone JD (1987) The actions of neuroleptic drugs on appetitive instrumental behaviors. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum, New York, pp 575–608

    Google Scholar 

  • Salamone JD (1988) Dopaminergic involvement in activational aspects of motivation: effects of haloperidol on schedule induced activity, feeding and foraging in rats. Psychobiology 16:196–206

    CAS  Google Scholar 

  • Salamone JD (1991) Behavioral pharmacology of dopamine systems: a new synthesis. In: Willner P, Scheel-Kruger J (eds) The mesolimbic dopamine system: from motivation to action. Cambridge University Press, Cambridge, England, pp 599–613

    Google Scholar 

  • Salamone JD (1992) Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology (Berl) 107:160–174

    CAS  Google Scholar 

  • Salamone JD (1994) The involvement of nucleus accumbens dopamine in appetitive and aversive motivation. Behav Brain Res 61:117–133

    PubMed  CAS  Google Scholar 

  • Salamone JD (1996) The behavioral neurochemistry of motivation: methodological and conceptual issues in studies of the dynamic activity of nucleus accumbens dopamine. J Neurosci Methods 64:137–149

    PubMed  CAS  Google Scholar 

  • Salamone JD (2007) Functions of mesolimbic dopamine: changing concepts and shifting paradigms. Psychopharmacology (in this issue)

  • Salamone JD, Correa M (2002) Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behav Brain Res 137:3–25

    PubMed  CAS  Google Scholar 

  • Salamone JD, Zigmond MJ, Stricker EM (1990) Characterization of the impaired feeding behavior in rats given haloperidol or dopamine-depleting brain lesions. Neuroscience 39:17–24

    PubMed  CAS  Google Scholar 

  • Salamone JD, Steinpreis RE, McCullough LD, Smith P, Grebel D, Mahan K (1991) Haloperidol and nucleus accumbens dopamine depletion suppress lever pressing for food but increase free food consumption in a novel food choice procedure. Psychopharmacology (Berl) 104:515–521

    CAS  Google Scholar 

  • Salamone JD, Kurth PA, McCullough LD, Sokolowski JD, Cousins MS (1993a) The role of brain dopamine in response initiation: effects of haloperidol and regionally specific dopamine depletions on the local rate of instrumental responding. Brain Res 628:218–226

    PubMed  CAS  Google Scholar 

  • Salamone JD, Mahan K, Rogers S (1993b) Ventrolateral striatal dopamine depletions impair feeding and food handling in rats. Pharmacol Biochem Behav 44:605–610

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Bucher S (1994) Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behav Brain Res 65:221–229

    PubMed  CAS  Google Scholar 

  • Salamone JD, Kurth P, McCullough LD, Sokolowski JD (1995) The effects of nucleus accumbens dopamine depletions on continuously reinforced operant responding: contrasts with the effects of extinction. Pharmacol Biochem Behav 50:437–443

    PubMed  CAS  Google Scholar 

  • Salamone JD, Cousins MS, Maio C, Champion M, Turski T, Kovach J (1996) Different behavioral effects of haloperidol, clozapine and thioridazine in a concurrent lever pressing and feeding procedure. Psychopharmacology (Berl) 125:105–112

    CAS  Google Scholar 

  • Salamone JD, Cousins MS, Snyder BJ (1997) Behavioral functions of nucleus accumbens dopamine: empirical and conceptual problems with the anhedonia hypothesis. Neurosci Biobehav Rev 21:341–359

    PubMed  CAS  Google Scholar 

  • Salamone JD, Aberman JE, Sokolowski JD, Cousins MS (1999) Nucleus accumbens dopamine and rate of responding: Neurochemical and behavioral studies. Psychobiology 27:236–247

    CAS  Google Scholar 

  • Salamone JD, Wisniecki A, Carlson BB, Correa M (2001) Nucleus accumbens dopamine depletions make animals highly sensitive to high fixed ratio requirements but do not impair primary food reinforcement. Neuroscience 105:863–870

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote S, Weber SM (2003) Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. J Pharmacol Exp Ther 305:1–8

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM (2005) Beyond the reward hypothesis: alternative functions of nucleus accumbens dopamine. Curr Opin Pharmacol 5:34–41

    PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M, Mingote SM, Weber SM, Farrar AM (2006) Nucleus accumbens dopamine and the forebrain circuitry involved in behavioral activation and effort-related decision making: implications of understanding anergia and psychomotor slowing and depression. Curr Psychiatr Rev 2:267–280

    Google Scholar 

  • Santi AN, Parker LA (2001) The dopamine antagonist, alpha-flupenthixol, interferes with naloxone-induced place aversion learning, but not with acute opiate dependence in rats. Pharmacol Biochem Behav 70:193–197

    PubMed  CAS  Google Scholar 

  • Sarchiapone M, Carli V, Camardese G, Cuomo C, Di Guida D, Calgagni ML, Focacci C, De Riso S (2006) Dopamine transporter binding in depressed patients with anhedonia. Psychiatr Res Neuroimag 147:243–248

    CAS  Google Scholar 

  • Schmidt K, Nolte-Zenker B, Patzer J, Bauer M, Schmidt LG, Heinz A (2001) Psychopathological correlates of reduced dopamine receptor sensitivity in depression, schizophrenia, and opiate and alcohol dependence. Pharmacopsychiatry 34:66–72

    PubMed  CAS  Google Scholar 

  • Schoenbaum G, Setlow B (2003) Lesions of nucleus accumbens disrupt learning about aversive outcomes. J Neurosci 23:9833–9841

    PubMed  CAS  Google Scholar 

  • Schultz W (2002) Getting formal with dopamine and reward. Neuron 36:241–263

    PubMed  CAS  Google Scholar 

  • Schweimer J, Hauber W (2005) Involvement of the rat anterior cingulate cortex in control of instrumental responses guided by reward expectancy. Learn Mem 12:334–342

    PubMed  Google Scholar 

  • Schweimer J, Saft S, Hauber W (2005) Involvement of catecholamine neurotransmission in the rat anterior cingulate in effort-related decision making. Behav Neurosci 119:1687–1692

    PubMed  CAS  Google Scholar 

  • Sienkiewicz-Jarosz H, Scinska A, Kuran W, Ryglewicz D, Rogowski A, Wrobel E, Korkosz A, Kukwa A, Kostowski W, Bienkowski P (2005) Taste responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:40–46

    PubMed  CAS  Google Scholar 

  • Smith-Roe SL, Kelley AE (2000) Coincident activation of NMDA and dopamine D1 receptors within the nucleus accumbens core is required for appetitive instrumental learning. J Neurosci 20:7737–7742

    PubMed  CAS  Google Scholar 

  • Smith GP (1995) Dopamine and food reward. Prog Psychobiol Physiol Psychol 16:83–144

    Google Scholar 

  • Smith GP (2004) Accumbens dopamine mediates the rewarding effect of orosensory stimulation by sucrose. Appetite 43:11–13

    PubMed  CAS  Google Scholar 

  • Spence KW (1956) Behavior Theory and Conditioning. New Haven: Yale University Press

  • Sotak BN, Hnasko TS, Robinson S, Kremer EJ, Palmiter RD (2005) Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res 1061:88–96

    PubMed  CAS  Google Scholar 

  • Sokolowski JD, Salamone JD (1998) The role of accumbens dopamine in lever pressing and response allocation: effects of 6-OHDA injected into core and dorsomedial shell. Pharmacol Biochem Behav 59:557–566

    PubMed  CAS  Google Scholar 

  • Staddon JER, Simmelhag VL (1971) The superstition experiment: a re-examination of its implications for the principles of adaptive behavior. Psychol Rev 78:3–43

    Google Scholar 

  • Stahl SM (2002) The psychopharmacology of energy and fatigue. J Clin Psychiatry 63:7–8

    PubMed  Google Scholar 

  • Stefurak TL, van der Kooy D (1994) Tegmental pedunculopontine lesions in rats decrease saccharin’s rewarding effects but not its memory-improving effect. Behav Neurosci 108:972–980

    PubMed  CAS  Google Scholar 

  • Stellar JR (2001) Reward. In: Winn P (ed) Dictionary of biological psychology. Routledge, London, p 679

    Google Scholar 

  • Svenningsson P, Le Moine C, Fisone G, Fredholm BB (1999) Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol 59:355–396

    Google Scholar 

  • Swerdlow NR, Mansbach RS, Geyer MA, Pulvirenti L, Koob GF, Braff DL (1990) Amphetamine disruption of prepulse inhibition of acoustic startle is reversed by depletion of mesolimbic dopamine. Psychopharmacology (Berl) 100:413–416

    CAS  Google Scholar 

  • Swindle R et al (2001) Energy and improved workplace productivity in depression. In: Sorkin A, Summers K, Farquhar I (eds) Investing in health: the social and economic benefits of health care innovation. Elsevier, Amsterdam, The Netherlands, pp 323–341

    Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    PubMed  CAS  Google Scholar 

  • Treit D, Berridge KC (1990) A comparison of benzodiazepine, serotonin, and dopamine agents in the taste-reactivity paradigm. Pharmacol Biochem Behav 37:451–456

    PubMed  CAS  Google Scholar 

  • Tylee A, Gastpar M, Lepine JP, Mendlewicz J (1999) DEPRES II (Depression Research in European Society II): a patient survey of the symptoms, disability and current management of depression in the community. DEPRES Steering Committee. Int Clin Psychopharmacol 14:139–151

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand 367(Suppl):95–122

    Google Scholar 

  • Ungless MA (2004) Dopamine: the salient issue. Trends Neurosci 27:702–706

    PubMed  CAS  Google Scholar 

  • van den Bos R, van der Harst J, Jonkman S, Schilders M, Spruijt B (2006) Rats assess costs and benefits according to an internal standard. Behav Brain Res 171:350–354

    PubMed  Google Scholar 

  • van Praag HM, Korf J (1971) Current developments in the field of antidepressive agents. Ned Tijdschr Geneeskd 115:1963–1970

    PubMed  Google Scholar 

  • Vezina P, Lorrain DS, Arnold GM, Austin JD, Suto N (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J Neurosci 22:4654–4662

    PubMed  CAS  Google Scholar 

  • Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382

    PubMed  CAS  Google Scholar 

  • Wachtel SR, Ortengren A, de Wit H (2002) The effects of acute haloperidol or risperidone on subjective responses to methamphetamine in healthy volunteers. Drug Alcohol Depend 68:23–33

    PubMed  CAS  Google Scholar 

  • Wakabayashi KT, Fields HL, Nicola SM (2004) Dissociation of the role of nucleus accumbens dopamine in responding to reward-predictive cues and waiting for reward. Behav Brain Res 154:19–30

    Article  PubMed  CAS  Google Scholar 

  • Wallace M, Singer G, Finlay J, Gibson S (1983) The effect of 6-OHDA lesions of the nucleus accumbens septum on schedule-induced drinking, wheelrunning and corticosterone levels in the rat. Pharmacol Biochem Behav 18:129–136

    PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Rushworth MF (2002) The role of rat medial frontal cortex in effort-based decision making. J Neurosci 22:10996–11003

    PubMed  CAS  Google Scholar 

  • Walton ME, Bannerman DM, Alterescu K, Rushworth MF (2003) Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. J Neurosci 23:6475–6479

    PubMed  CAS  Google Scholar 

  • Walton ME, Croxson PL, Rushworth MF, Bannerman DM (2005) The mesocortical dopamine projection to anterior cingulate cortex plays no role in guiding effort-related decisions. Behav Neurosci 119:323–328

    PubMed  CAS  Google Scholar 

  • Walton ME, Kennerley SW, Bannerman DM, Phillips PE, Rushworth MF (2006) Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw 19:1302–1314

    PubMed  CAS  Google Scholar 

  • Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W, Netusil N, Fowler JS (2001) Brain dopamine and obesity. Lancet 357:354–357

    PubMed  CAS  Google Scholar 

  • Weissenborn R, Blaha CD, Winn P, Phillips AG (1996) Schedule-induced polydipsia and the nucleus accumbens: electrochemical measurements of dopamine efflux and effects of excitotoxic lesions in the core. Behav Brain Res 75:147–158

    PubMed  CAS  Google Scholar 

  • White NM (1989) Reward or reinforcement: what’s the difference? Neurosci Biobehav Rev 13:181–186

    PubMed  CAS  Google Scholar 

  • Willner P (1983) Dopamine and depression: a review of recent evidence. I. Empirical Studies. Brain Res Rev 6:211–224

    Google Scholar 

  • Winstanley CA, Theobald DE, Dalley JW, Robbins TW (2005) Interactions between serotonin and dopamine in the control of impulsive choice in rats: therapeutic implications for impulse control disorders. Neuropsychopharmacology 30:669–682

    PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5:39–87

    Article  Google Scholar 

  • Wise RA (1985) The anhedonia hypothesis: Mark III. Behav Brain Sci 8:178–186

    Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    PubMed  CAS  Google Scholar 

  • Wise RA, Colle LM (1984) Pimozide attenuates free feeding: best scores analysis reveals a motivational deficit. Psychopharmacology (Berl) 84:446–451

    CAS  Google Scholar 

  • Wise RA, Raptis L (1985) Effects of pre-feeding on food-approach latency and food consumption speed in food deprived rats. Physiol Behav 35:961–963

    PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, deWit H, Gerberg GJ (1978a) Neuroleptic-induced “anhedonia” in rats: pimozide blocks reward quality of food. Science 201:262–264

    PubMed  CAS  Google Scholar 

  • Wise RA, Spindler J, Legault L (1978b) Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Can J Psychol 32:77–85

    PubMed  CAS  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21:7831–7840

    PubMed  CAS  Google Scholar 

  • Xenakis S, Sclafani A (1982) The dopaminergic mediation of a sweet reward in normal and VMH hyperphagic rats. Pharmacol Biochem Behav 16:293–302

    PubMed  CAS  Google Scholar 

  • Young AM (2004) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Methods 138:57–63

    PubMed  CAS  Google Scholar 

  • Young AB, Penney JB (1993) Biochemical and functional organization of the basal ganglia. In: Jankowic J, Tolosa E (eds) Parkinson’s disease and movement disorders. Williams and Wilkins, Baltimore, pp 1–12

    Google Scholar 

  • Yu WZ, Silva RM, Sclafani A, Delamater AR, Bodnar RJ (2000) Pharmacology of flavor preference conditioning in sham-feeding rats: effects of dopamine receptor antagonists. Pharmacol Biochem Behav 65:635–647

    PubMed  CAS  Google Scholar 

  • Zahm DS (2000) An integrative neuroanatomical perspective on some subcortical substrates of adaptative responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 24:85–105

    PubMed  CAS  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of the subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    PubMed  CAS  Google Scholar 

  • Zahm DS, Hemier L (1990) Two transpallidal pathways originating in rat nucleus accumbens. J Comp Neurol 302:437–446

    PubMed  CAS  Google Scholar 

  • Zigmond MJ, Acheson AL, Stowiak MK, Striker EM (1984) Neurochemical compensation after nigrostriatal bundle injury in an animal model of parkinsonism. Arch Neurol 41:856–861

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Much of the work cited in this review was supported by grants to JDS from the US NSF and NIH/NIMH, NIDA, and NINDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Salamone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salamone, J.D., Correa, M., Farrar, A. et al. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology 191, 461–482 (2007). https://doi.org/10.1007/s00213-006-0668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-006-0668-9

Keywords

Navigation