Abstract
We calculate the gluonic massive operator matrix elements in the unpolarized and polarized cases, Agg,Q(x, μ2) and ∆Agg,Q(x, μ2), at three-loop order for a single mass. These quantities contribute to the matching of the gluon distribution in the variable flavor number scheme. The polarized operator matrix element is calculated in the Larin scheme. These operator matrix elements contain finite binomial and inverse binomial sums in Mellin N-space and iterated integrals over square root-valued alphabets in momentum fraction x-space. We derive the necessary analytic relations for the analytic continuation of these quantities from the even or odd Mellin moments into the complex plane, present analytic expressions in momentum fraction x-space and derive numerical results. The present results complete the gluon transition matrix elements both of the single- and double-mass variable flavor number scheme to three-loop order.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
S. Bethke et al., Workshop on Precision Measurements of alphas Munich Germany, February 9–11 February 2011 [arXiv:1110.0016] [INSPIRE].
S. Moch et al., High precision fundamental constants at the TeV scale, arXiv:1405.4781 [INSPIRE].
D. d’Enterria and P.Z. Skands, eds., Proceedings, High-Precision αs Measurements from LHC to FCC-ee, Geneva Switzerland, October 2–13 2015 [arXiv:1512.05194] [INSPIRE].
S. Alekhin, J. Blümlein and S.O. Moch, αs from global fits of parton distribution functions, Mod. Phys. Lett. A 31 (2016) 1630023 [INSPIRE].
A. Accardi et al., A Critical Appraisal and Evaluation of Modern PDFs, Eur. Phys. J. C 76 (2016) 471 [arXiv:1603.08906] [INSPIRE].
S. Alekhin, J. Blümlein, S. Moch and R. Placakyte, Parton distribution functions, αs, and heavy-quark masses for LHC Run II, Phys. Rev. D 96 (2017) 014011 [arXiv:1701.05838] [INSPIRE].
M. Buza, Y. Matiounine, J. Smith, R. Migneron and W.L. van Neerven, Heavy quark coefficient functions at asymptotic values Q2 ≫ m2, Nucl. Phys. B 472 (1996) 611 [hep-ph/9601302] [INSPIRE].
I. Bierenbaum, J. Blümlein and S. Klein, Mellin Moments of the O(\( {\alpha}_s^3 \)) Heavy Flavor Contributions to unpolarized Deep-Inelastic Scattering at Q2 ≫ m2 and Anomalous Dimensions, Nucl. Phys. B 820 (2009) 417 [arXiv:0904.3563] [INSPIRE].
J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, C. Schneider and F. Wißbrock, Three Loop Massive Operator Matrix Elements and Asymptotic Wilson Coefficients with Two Different Masses, Nucl. Phys. B 921 (2017) 585 [arXiv:1705.07030] [INSPIRE].
A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein and F. Wißbrock, The logarithmic contributions to the O(\( {\alpha}_s^3 \)) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering, Eur. Phys. J. C 74 (2014) 3033 [arXiv:1403.6356] [INSPIRE].
J.A.M. Vermaseren, A. Vogt and S. Moch, The Third-order QCD corrections to deep-inelastic scattering by photon exchange, Nucl. Phys. B 724 (2005) 3 [hep-ph/0504242] [INSPIRE].
J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The massless three-loop Wilson coefficients for the deep-inelastic structure functions F2, FL, xF3 and g1, JHEP 11 (2022) 156 [arXiv:2208.14325] [INSPIRE].
E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, Complete O(αs) corrections to heavy flavor structure functions in electroproduction, Nucl. Phys. B 392 (1993) 162 [INSPIRE].
E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, O(αs) corrections to heavy flavor inclusive distributions in electroproduction, Nucl. Phys. B 392 (1993) 229.
E. Laenen, S. Riemersma, J. Smith and W.L. van Neerven, O(αs) corrections to heavy flavor inclusive distributions in electroproduction, Nucl. Phys. B 392 (1993) 229 [INSPIRE].
I. Bierenbaum, J. Blümlein and S. Klein, Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q2 ≫ m2, Nucl. Phys. B 780 (2007) 40 [hep-ph/0703285] [INSPIRE].
I. Bierenbaum, J. Blümlein and S. Klein, The Gluonic Operator Matrix Elements at O(\( {\alpha}_s^2 \)) for DIS Heavy Flavor Production, Phys. Lett. B 672 (2009) 401 [arXiv:0901.0669] [INSPIRE].
M. Buza and W.L. van Neerven, O(\( {\alpha}_s^2 \)) contributions to charm production in charged current deep inelastic lepton-hadron scattering, Nucl. Phys. B 500 (1997) 301 [hep-ph/9702242] [INSPIRE].
J. Blümlein, A. Hasselhuhn, P. Kovacikova and S. Moch, O(αs) Heavy Flavor Corrections to Charged Current Deep-Inelastic Scattering in Mellin Space, Phys. Lett. B 700 (2011) 294 [arXiv:1104.3449] [INSPIRE].
J. Blümlein, A. Hasselhuhn and T. Pfoh, The O(\( {\alpha}_s^2 \)) heavy quark corrections to charged current deep-inelastic scattering at large virtualities, Nucl. Phys. B 881 (2014) 1 [arXiv:1401.4352] [INSPIRE].
J. Blümlein, G. Falcioni and A. De Freitas, The Complete O(\( {\alpha}_s^2 \)) Non-Singlet Heavy Flavor Corrections to the Structure Functions \( {g}_{1,2}^{ep} \)(x, Q2), \( {F}_{1,2,L}^{ep} \)(x, Q2), \( {F}_{1,2,3}^{\nu \left(\overline{\nu}\right)} \)(x, Q2) and the Associated Sum Rules, Nucl. Phys. B 910 (2016) 568 [arXiv:1605.05541] [INSPIRE].
I. Bierenbaum, J. Blümlein, S. Klein and C. Schneider, Two-Loop Massive Operator Matrix Elements for Unpolarized Heavy Flavor Production to O(ϵ), Nucl. Phys. B 803 (2008) 1 [arXiv:0803.0273] [INSPIRE].
I. Bierenbaum, J. Blümlein, A. De Freitas, A. Goedicke, S. Klein and K. Schönwald, O(\( {\alpha}_s^2 \)) Polarized Heavy Flavor Correctionsto Deep-Inelastic Scattering at Q2 ≫ m2, arXiv:2211.15337.
M. Buza, Y. Matiounine, J. Smith and W.L. van Neerven, Charm electroproduction viewed in the variable flavor number scheme versus fixed order perturbation theory, Eur. Phys. J. C 1 (1998) 301 [hep-ph/9612398] [INSPIRE].
J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, The O(\( {\alpha}_s^3 \)) Massive Operator Matrix Elements of O(nf) for the Structure Function F2(x, Q2) and Transversity, Nucl. Phys. B 844 (2011) 26 [arXiv:1008.3347] [INSPIRE].
J. Ablinger et al., The 3-Loop Non-Singlet Heavy Flavor Contributions and Anomalous Dimensions for the Structure Function F2(x, Q2) and Transversity, Nucl. Phys. B 886 (2014) 733 [arXiv:1406.4654] [INSPIRE].
J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure singlet heavy flavor contributions to the structure function F2(x, Q2) and the anomalous dimension, Nucl. Phys. B 890 (2014) 48 [arXiv:1409.1135] [INSPIRE].
A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel and C. Schneider, O(\( {\alpha}_s^3 \)) heavy flavor contributions to the charged current structure function xF3(x, Q2) at large momentum transfer, Phys. Rev. D 92 (2015) 114005 [arXiv:1508.01449] [INSPIRE].
A. Behring, J. Blümlein, G. Falcioni, A. De Freitas, A. von Manteuffel and C. Schneider, Asymptotic 3-loop heavy flavor corrections to the charged current structure functions \( {F}_L^{W^{+}-{W}^{-}} \) (x, Q2) and \( {F}_2^{W^{+}-{W}^{-}} \) (x, Q2), Phys. Rev. D 94 (2016) 114006 [arXiv:1609.06255] L 2 [INSPIRE].
J. Ablinger et al., New Results on Massive 3-Loop Wilson Coefficients in Deep-Inelastic Scattering, PoS LL2016 (2016) 065 [arXiv:1609.03397] [INSPIRE].
J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider and F. Wißbrock, The Transition Matrix Element Agq(N) of the Variable Flavor Number Scheme at O(\( {\alpha}_s^3 \)), Nucl. Phys. B 882 (2014) 263 [arXiv:1402.0359].
J. Blümlein, A. Hasselhuhn, S. Klein and C. Schneider, The O(\( {\alpha}_s^3 \)nf\( {T}_F^2 \)CA,F) Contributions s F to the Gluonic Massive Operator Matrix Elements, Nucl. Phys. B 866 (2013) 196 [arXiv:1205.4184] [INSPIRE].
J. Ablinger et al., The O(\( {\alpha}_s^3{T}_F^2 \)) Contributions to the Gluonic Operator Matrix Element, Nucl. Phys. B 885 (2014) 280 [arXiv:1405.4259] [INSPIRE].
J. Blümlein, A. De Freitas, M. Saragnese, C. Schneider and K. Schönwald, Logarithmic contributions to the polarized O(\( {\alpha}_s^3 \)) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering, Phys. Rev. D 104 (2021) 034030 [arXiv:2105.09572] [INSPIRE].
J. Ablinger, J. Blümlein, S. Klein, C. Schneider and F. Wißbrock, 3-Loop Heavy Flavor Corrections to DIS with two Massive Fermion Lines, in 19th International Workshop on Deep-Inelastic Scattering and Related Subjects, Newport News U.S.A., April 11–15 2011 [arXiv:1106.5937] [INSPIRE].
J. Ablinger, J. Blümlein, A. Hasselhuhn, S. Klein, C. Schneider and F. Wißbrock, New Heavy Flavor Contributions to the DIS Structure Function F2(x, Q2) at \( \mathcal{O} \)(\( {\alpha}_s^3 \)), PoS RADCOR2011 (2011) 031 [arXiv:1202.2700] [INSPIRE].
J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The three-loop splitting functions \( {P}_{qg}^{(2)} \) and \( {P}_{gg}^{\left(2,{N}_F\right)} \), Nucl. Phys. B 922 (2017) 1 qg gg [arXiv:1705.01508] [INSPIRE].
J. Ablinger et al., The three-loop single mass polarized pure singlet operator matrix element, Nucl. Phys. B 953 (2020) 114945 [arXiv:1912.02536] [INSPIRE].
J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop polarized singlet anomalous dimensions from off-shell operator matrix elements, JHEP 01 (2022) 193 [arXiv:2111.12401] [INSPIRE].
J. Ablinger, J. Blümlein, A. De Freitas, A. Goedicke, C. Schneider and K. Schönwald, The Two-mass Contribution to the Three-Loop Gluonic Operator Matrix Element \( {A}_{gg,Q}^{(3)} \), Nucl. Phys. B 932 (2018) 129 [arXiv:1804.02226] [INSPIRE].
J. Ablinger et al., The two-mass contribution to the three-loop polarized gluonic operator matrix element \( {A}_{gg,Q}^{(3)} \), Nucl. Phys. B 955 (2020) 115059 [arXiv:2004.08916] [INSPIRE].
J. Blümlein, A. De Freitas, C. Schneider and K. Schönwald, The Variable Flavor Number Scheme at Next-to-Leading Order, Phys. Lett. B 782 (2018) 362 [arXiv:1804.03129] [INSPIRE].
J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, Calculating Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra, Comput. Phys. Commun. 202 (2016) 33 [arXiv:1509.08324] [INSPIRE].
F. Klein, Vorlesungen über die hypergeometrische Funktion, Wintersemester 1893/94, Die Grundlehren der Mathematischen Wissenschaften 39, Springer, Berlin (1933).
W.N. Bailey, Generalized Hypergeometric Series, Cambridge University Press, Cambridge, (1935).
P. Appell and J. Kampé de Fériet, Fonctions Hypergéométriques et Hyperspériques, Polynomes D’ Hermite, Gauthier-Villars, Paris (1926).
P. Appell, Les Fonctions Hypergéométriques de Plusieur Variables, Gauthier-Villars, Paris (1925).
J. Kampé de Fériet, La fonction hypergéométrique, Gauthier-Villars, Paris (1937).
H. Exton, Multiple Hypergeometric Functions and Applications, (1976) [INSPIRE].
H. Exton, Handbook of Hypergeometric Integrals, Ellis Horwood, Chichester (1978).
H.M. Srivastava and P.W. Karlsson, Multiple Gaussian Hypergeometric Series, Ellis Horwood, Chicester (1985).
M.J. Schlosser, Multiple Hypergeometric Series: Appell Series and Beyond, in LHCPhenoNet School: Integration, Summation and Special Functions in Quantum Field Theory, Springer (2013), pp. 305–324 [DOI] [arXiv:1305.1966] [INSPIRE].
L.J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge (1966) [ISBN 0-521-06483-X] [MR 0201688] [2008 paperback edition ISBN 978-0-521-09061-2].
M. Czakon, Automatized analytic continuation of Mellin-Barnes integrals, Comput. Phys. Commun. 175 (2006) 559 [hep-ph/0511200] [INSPIRE].
A.V. Smirnov and V.A. Smirnov, On the Resolution of Singularities of Multiple Mellin-Barnes Integrals, Eur. Phys. J. C 62 (2009) 445 [arXiv:0901.0386] [INSPIRE].
A.V. Kotikov, Differential equations method. New technique for massive Feynman diagram calculation, Physics Letters B 254 (1991) 158.
M. Caffo, H. Czyz, S. Laporta and E. Remiddi, Master equations for master amplitudes, Acta Phys. Polon. B 29 (1998) 2627 [hep-th/9807119] [INSPIRE].
M. Caffo, H. Czyz, S. Laporta and E. Remiddi, The Master differential equations for the two loop sunrise selfmass amplitudes, Nuovo Cim. A 111 (1998) 365 [hep-th/9805118] [INSPIRE].
T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl. Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].
A.V. Kotikov, The Property of maximal transcendentality in the N = 4 Supersymmetric Yang-Mills, in Subtleties in quantum field theory: Lev Lipatov Festschrift, St. Petersburg Nucl. Phys. Inst., Gatchina, Russia (2010), pp. 150–174 [arXiv:1005.5029] [INSPIRE].
A.V. Kotikov, The property of maximal transcendentality: calculation of master integrals, Theor. Math. Phys. 176 (2013) 913 [arXiv:1212.3732] [INSPIRE].
A.V. Kotikov, The property of maximal transcendentality: Calculation of anomalous dimensions in the N = 4 SYM and master integrals, Phys. Part. Nucl. 44 (2013) 374.
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].
J. Ablinger, J. Blümlein, P. Marquard, N. Rana and C. Schneider, Automated Solution of First Order Factorizable Systems of Differential Equations in One Variable, Nucl. Phys. B 939 (2019) 253 [arXiv:1810.12261] [INSPIRE].
G. Almkvist and D. Zeilberger, The method of differentiating under the integral sign, J. Symb. Comput. 10 (1990) 571.
M. Apagodu and D. Zeilberger, Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. Appl. Math. 37 (2006) 139.
J. Ablinger, Extensions of the AZ-Algorithm and the Package MultiIntegrate, in Antidifferentiation and the Calculation of Feynman Amplitudes, Springer (2021) [DOI] [arXiv:2101.11385] [INSPIRE].
C. Schneider, Symbolic summation assists combinatorics, Sém. Lothar. Combin. 56 (2007) 1 [article B56b].
C. Schneider, Simplifying Multiple Sums in Difference Fields, in LHCPhenoNet School: Integration, Summation and Special Functions in Quantum Field Theory, Springer (2013), pp. 325–360 [DOI] [arXiv:1304.4134] [INSPIRE].
J. Ablinger, J. Blümlein, S. Klein and C. Schneider, Modern Summation Methods and the Computation of 2- and 3-loop Feynman Diagrams, Nucl. Phys. B Proc. Suppl. 205–206 (2010) 110 [arXiv:1006.4797] [INSPIRE].
J. Blümlein, A. Hasselhuhn and C. Schneider, Evaluation of Multi-Sums for Large Scale Problems, PoS RADCOR2011 (2011) 032 [arXiv:1202.4303] [INSPIRE].
C. Schneider, Symbolic Summation in Difference Fields and Its Application in Particle Physics, Computer Algebra Rundbrief 53 (2013) 8.
C. Schneider, Modern Summation Methods for Loop Integrals in Quantum Field Theory: The Packages Sigma, EvaluateMultiSums and SumProduction, J. Phys. Conf. Ser. 523 (2014) 012037 [arXiv:1310.0160] [INSPIRE].
M. Karr, Summation in finite terms, J. ACM 28 (1981) 305.
C. Schneider, Symbolic Summation in Difference Fields, Ph.D. Thesis RISC, Johannes Kepler University, Linz technical report 01–17 (2001).
C. Schneider, A Collection of Denominator Bounds to Solve Parameterized Linear Difference Equations in ΠΣ-Extensions, Timisoara Ser. Mat.-Inform. 42 (2004) 163.
C. Schneider, Solving parameterized linear difference equations in terms of indefinite nested sums and products, J. Differ. Equations Appl. 11 (2005) 799.
C. Schneider, Degree Bounds To Find Polynomial Solutions of Parameterized Linear Difference Equations in ΠΣ-Fields, Appl. Algebra Engrg. Comm. Comput. 16 (2005) 1.
S.A. Abramov, M. Bronstein, M. Petkovšek and C. Schneider, On rational and hypergeometric solutions of linear ordinary difference equations in ΠΣ*-field extensions, arXiv:2005.04944.
C. Schneider, Simplifying sums in ΠΣ-extensions, J. Algebra Appl. 06 (2007) 415.
C. Schneider, A Symbolic Summation Approach to Find Optimal Nested Sum Representations, Clay Math. Proc. 12 (2010) 285 [arXiv:0904.2323] [INSPIRE].
C. Schneider, Parameterized Telescoping Proves Algebraic Independence of Sums, arXiv:0808.2596 [INSPIRE].
C. Schneider, Fast Algorithms for Refined Parameterized Telescoping in Difference Fields, in Computer Algebra and Polynomials, Applications of Algebra and Number Theory, J. Gutierrez, J. Schicho, M. Weimann eds., Lecture Notes in Computer Science (LNCS) 8942 (2015), pp. 157–191 arXiv:1307.7887.
C. Schneider, A refined difference field theory for symbolic summation, J. Symbolic Comput. 43 (2008) 611 [arXiv:0808.2543].
C. Schneider, A difference ring theory for symbolic summation, J Symbolic Comput. 72 (2016) 82.
C. Schneider, Summation theory II: Characterizations of RΠΣ*-extensions and algorithmic aspects, J. Symb. Comput. 80 (2017) 616 [arXiv:1603.04285].
B. Zürcher, Rationale Normalformen von pseudo-linearen Abbildungen, Ph.D. Thesis Mathematik, ETH Zürich (1994).
A. Bostan, F. Chyzak and É. de Panafieu, Complexity estimates for two uncoupling algorithms, in Proceedings of the 38th international symposium on International symposium on symbolic and algebraic computation — ISSAC ‘13, Boston U.S.A., June 26–29 2013 [ACM Press (2013), DOI].
S. Gerhold, Uncoupling Systems of Linear Ore Operator Equations, MSc thesis, RISC, J. Kepler University, Linz (2002).
J. Blümlein, S. Klein, C. Schneider and F. Stan, A Symbolic Summation Approach to Feynman Integral Calculus, J. Symb. Comput. 47 (2012) 1267 [arXiv:1011.2656] [INSPIRE].
J. Blümlein and C. Schneider, Analytic computing methods for precision calculations in quantum field theory, Int. J. Mod. Phys. A 33 (2018) 1830015 [arXiv:1809.02889] [INSPIRE].
J. Blümlein and C. Schneider, Chapter 4: Multi-loop Feynman integrals, J. Phys. A 55 (2022) 443005 [arXiv:2203.13015] [INSPIRE].
J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys. A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE].
J. Blümlein and S. Kurth, Harmonic sums and Mellin transforms up to two loop order, Phys. Rev. D 60 (1999) 014018 [hep-ph/9810241] [INSPIRE].
E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15 (2000) 725 [hep-ph/9905237] [INSPIRE].
S. Moch, P. Uwer and S. Weinzierl, Nested sums, expansion of transcendental functions and multiscale multiloop integrals, J. Math. Phys. 43 (2002) 3363 [hep-ph/0110083] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Iterated integrals over letters induced by quadratic forms, Phys. Rev. D 103 (2021) 096025 [arXiv:2103.08330] [INSPIRE].
J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider, Iterated Binomial Sums and their Associated Iterated Integrals, J. Math. Phys. 55 (2014) 112301 [arXiv:1407.1822] [INSPIRE].
J. Ablinger, J. Blümlein and C. Schneider, Generalized Harmonic, Cyclotomic, and Binomial Sums, their Polylogarithms and Special Numbers, J. Phys. Conf. Ser. 523 (2014) 012060 [arXiv:1310.5645] [INSPIRE].
J. Ablinger, The package HarmonicSums: Computer Algebra and Analytic aspects of Nested Sums, PoS LL2014 (2014) 019 [arXiv:1407.6180] [INSPIRE].
J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, MSc Thesis, Inst. fur Theor. Physik, Johannes Kepler University of Linz (2009) [arXiv:1011.1176] [INSPIRE].
J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Inst. fur Theor. Physik, Johannes Kepler University of Linz (2012) [arXiv:1305.0687] [INSPIRE].
J. Ablinger, Inverse Mellin Transform of Holonomic Sequences, PoS LL2016 (20016) 067 [INSPIRE].
J. Ablinger, Discovering and Proving Infinite Binomial Sums Identities, Exper. Math. 26 (2016) 62 [arXiv:1507.01703] [INSPIRE].
J. Ablinger, Computing the inverse mellin transform of holonomic sequences using kovacic’s algorithm, in Proceedings of 13th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology), St. Gilgen Austria, September 25–29 2017 [PoS RADCOR2017 001].
J. Ablinger, Discovering and Proving Infinite Pochhammer Sum Identities, Exper. Math. 31 (2022) 309 [arXiv:1902.11001] [INSPIRE].
J. Ablinger, An Improved Method to Compute the Inverse Mellin Transform of Holonomic Sequences, PoS LL2018 (2018) 063 [INSPIRE].
J. Blümlein, Algebraic relations between harmonic sums and associated quantities, Comput. Phys. Commun. 159 (2004) 19 [hep-ph/0311046] [INSPIRE].
J. Blümlein, Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5, Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106] [INSPIRE].
J. Blümlein, Structural Relations of Harmonic Sums and Mellin Transforms at Weight w = 6, Clay Math. Proc. 12 (2010) 167 [arXiv:0901.0837] [INSPIRE].
J. Blümlein, The Theory of Deeply Inelastic Scattering, Prog. Part. Nucl. Phys. 69 (2013) 28 [arXiv:1208.6087] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].
A. Vogt, S. Moch and J.A.M. Vermaseren, The Three-loop splitting functions in QCD: The Singlet case, Nucl. Phys. B 691 (2004) 129 [hep-ph/0404111] [INSPIRE].
S. Moch, J.A.M. Vermaseren and A. Vogt, The Three-Loop Splitting Functions in QCD: The Helicity-Dependent Case, Nucl. Phys. B 889 (2014) 351 [arXiv:1409.5131] [INSPIRE].
C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Higgs Boson Gluon-Fusion Production in QCD at Three Loops, Phys. Rev. Lett. 114 (2015) 212001 [arXiv:1503.06056] [INSPIRE].
C. Duhr, F. Dulat and B. Mistlberger, Drell-Yan Cross Section to Third Order in the Strong Coupling Constant, Phys. Rev. Lett. 125 (2020) 172001 [arXiv:2001.07717] [INSPIRE].
C. Duhr, F. Dulat and B. Mistlberger, Charged current Drell-Yan production at N3LO, JHEP 11 (2020) 143 [arXiv:2007.13313] [INSPIRE].
J. Blümlein, P. Marquard, C. Schneider and K. Schönwald, The three-loop unpolarized and polarized non-singlet anomalous dimensions from off shell operator matrix elements, Nucl. Phys. B 971 (2021) 115542 [arXiv:2107.06267] [INSPIRE].
T. Gehrmann, A. von Manteuffel and T.-Z. Yang, Renormalization of twist-two operators in QCD and its application to singlet splitting functions, PoS LL2022 (2022) 063 [arXiv:2207.10108] [INSPIRE].
S.W.G. Klein, Mellin Moments of Heavy Flavor Contributions to F2(x, Q2) at NNLO, Ph.D. Thesis, Fakultät Physik, Technische Universität Dortmund, Berlin (2009) [DOI] [arXiv:0910.3101] [INSPIRE].
R. Tarrach, The Pole Mass in Perturbative QCD, Nucl. Phys. B 183 (1981) 384 [INSPIRE].
N. Gray, D.J. Broadhurst, W. Grafe and K. Schilcher, Three Loop Relation of Quark (Modified) Ms and Pole Masses, Z. Phys. C 48 (1990) 673.
K.G. Chetyrkin and M. Steinhauser, Short distance mass of a heavy quark at order \( {\alpha}_s^3 \), Phys. Rev. Lett. 83 (1999) 4001 [hep-ph/9907509].
K.G. Chetyrkin and M. Steinhauser, The Relation between the \( \overline{\textrm{MS}} \) and the on-shell quark mass at order α3, Nucl. Phys. B 573 (2000) 617 [hep-ph/9911434] [INSPIRE].
K. Melnikov and T. van Ritbergen, The Three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131] [INSPIRE].
K. Melnikov and T.v. Ritbergen, The Three loop relation between the \( \overline{\textrm{MS}} \) and the pole quark masses, Phys. Lett. B 482 (2000) 99 [hep-ph/9912391] [INSPIRE].
P. Marquard, L. Mihaila, J.H. Piclum and M. Steinhauser, Relation between the pole and the minimally subtracted mass in dimensional regularization and dimensional reduction to three-loop order, Nucl. Phys. B 773 (2007) 1 [hep-ph/0702185] [INSPIRE].
P. Marquard, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark Mass Relations to Four-Loop Order in Perturbative QCD, Phys. Rev. Lett. 114 (2015) 142002 [arXiv:1502.01030] [INSPIRE].
P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser and D. Wellmann, \( \overline{\textrm{MS}} \)-on-shell quark mass relation up to four loops in QCD and a general SU(N) gauge group, Phys. Rev. D 94 (2016) 074025 [arXiv:1606.06754] [INSPIRE].
M. Fael, K. Schönwald and M. Steinhauser, Exact results for \( {Z}_m^{OS} \) and \( {Z}_2^{OS} \) with two mass m 2 scales and up to three loops, JHEP 10 (2020) 087 [arXiv:2008.01102] [INSPIRE].
M. Fael, F. Lange, K. Schönwald and M. Steinhauser, A semi-analytic method to compute Feynman integrals applied to four-loop corrections to the \( \overline{\textrm{MS}} \)-pole quark mass relation, JHEP 09 (2021) 152 [arXiv:2106.05296] [INSPIRE].
P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].
J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].
M. Tentyukov and J.A.M. Vermaseren, The Multithreaded version of FORM, Comput. Phys. Commun. 181 (2010) 1419 [hep-ph/0702279] [INSPIRE].
T. van Ritbergen, A.N. Schellekens and J.A.M. Vermaseren, Group theory factors for Feynman diagrams, Int. J. Mod. Phys. A 14 (1999) 41 [hep-ph/9802376] [INSPIRE].
J. Ablinger, J. Blümlein, C. Raab, C. Schneider and F. Wißbrock, Calculating Massive 3-loop Graphs for Operator Matrix Elements by the Method of Hyperlogarithms, Nucl. Phys. B 885 (2014) 409 [arXiv:1403.1137] [INSPIRE].
J. Lagrange, Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis, t. II, 1760-61.
J. Lagrange, Oeuvres, t. I, p. 263.
C.F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo tractate. Vol III, Commentationes societas scientiarum Gottingensis recentiores V, Werke Bd. (1813), pp. 5–7.
G. Green, Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham (1828) [Green Papers, pp. 1–115].
M. Ostrogradsky (presented: November 5, 1828 ; published: 1831) Première note sur la théorie de la chaleur, Mémoires de l’Académie impériale des sciences de St. Pétersbourg, series 6, 1: 129–133.
K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].
S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations, Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033].
C. Studerus, Reduze-Feynman Integral Reduction in C++, Comput. Phys. Commun. 181 (2010) 1293 [arXiv:0912.2546] [INSPIRE].
A. von Manteuffel and C. Studerus, Reduze 2 — Distributed Feynman Integral Reduction, arXiv:1201.4330 [INSPIRE].
J. Blümlein and C. Schneider, The Method of Arbitrarily Large Moments to Calculate Single Scale Processes in Quantum Field Theory, Phys. Lett. B 771 (2017) 31 [arXiv:1701.04614] [INSPIRE].
J. Blümlein, M. Kauers, S. Klein and C. Schneider, Determining the closed forms of the O(\( {a}_s^3 \)) anomalous dimensions and Wilson coefficients from Mellin moments by means of computer algebra, Comput. Phys. Commun. 180 (2009) 2143 [arXiv:0902.4091] [INSPIRE].
M. Kauers, Guessing Handbook, JKU Linz, Technical Report RISC 09.
M. Kauers, M. Jaroschek and F. Johansson, Ore polynomials in sage, in Computer Algebra and Polynomials, J. Gutierrez, J. Schicho, M. Weimann eds., Lecture Notes in Computer Science 8942, Springer, Berlin (2015), pp. 105–125 [DOI] [arXiv:1306.4263].
M. Steinhauser, MATAD: A Program package for the computation of MAssive TADpoles, Comput. Phys. Commun. 134 (2001) 335 [hep-ph/0009029] [INSPIRE].
J. Blümlein and K. Schönwald, DESY 20–53.
H.D. Politzer, Asymptotic Freedom: An Approach to Strong Interactions, Phys. Rept. 14 (1974) 129 [INSPIRE].
J. Blümlein and N. Kochelev, On the twist -2 and twist -3 contributions to the spin-dependent electroweak structure functions, Nucl. Phys. B 498 (1997) 285 [hep-ph/9612318] [INSPIRE].
J. Blümlein, D.J. Broadhurst and J.A.M. Vermaseren, The Multiple Zeta Value Data Mine, Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [INSPIRE].
A.I. Davydychev and M.Y. Kalmykov, Massive Feynman diagrams and inverse binomial sums, Nucl. Phys. B 699 (2004) 3 [hep-th/0303162] [INSPIRE].
S. Weinzierl, Expansion around half integer values, binomial sums and inverse binomial sums, J. Math. Phys. 45 (2004) 2656 [hep-ph/0402131] [INSPIRE].
S.A. Larin, The Renormalization of the axial anomaly in dimensional regularization, Phys. Lett. B 303 (1993) 113 [hep-ph/9302240] [INSPIRE].
F.A. Berends, W.L. van Neerven and G.J.H. Burgers, Higher Order Radiative Corrections at LEP Energies, Nucl. Phys. B 297 (1988) 429 [Erratum ibid. 304 (1988) 921] [INSPIRE].
J. Blümlein, A. De Freitas, C. Raab and K. Schönwald, The O(α2) initial state QED corrections to e+e− → γ*/\( {Z}_0^{\ast } \), Nucl. Phys. B 956 (2020) 115055 [arXiv:2003.14289] [INSPIRE].
J. Blümlein and A. Vogt, On the behavior of nonsinglet structure functions at small x, Phys. Lett. B 370 (1996) 149 [hep-ph/9510410] [INSPIRE].
J. Blümlein and A. Vogt, The Singlet contribution to the structure function g1(x, Q2) at small x, Phys. Lett. B 386 (1996) 350 [hep-ph/9606254] [INSPIRE].
J. Blümlein and A. Vogt, The Evolution of unpolarized singlet structure functions at small x, Phys. Rev. D 58 (1998) 014020 [hep-ph/9712546] [INSPIRE].
J. Blümlein, QCD evolution of structure functions at small x, Lect. Notes Phys. 546 (2000) 42 [hep-ph/9909449] [INSPIRE].
T. Gehrmann and E. Remiddi, Numerical evaluation of harmonic polylogarithms, Comput. Phys. Commun. 141 (2001) 296 [hep-ph/0107173] [INSPIRE].
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [hep-ph/0410259] [INSPIRE].
J. Ablinger, J. Blümlein, M. Round and C. Schneider, Numerical Implementation of Harmonic Polylogarithms to Weight w = 8, Comput. Phys. Commun. 240 (2019) 189 [arXiv:1809.07084] [INSPIRE].
J.M. Borwein, D.M. Bradley, D.J. Broadhurst and P. Lisonek, Special values of multiple polylogarithms, Trans. Am. Math. Soc. 353 (2001) 907 [math/9910045] [INSPIRE].
J. Naas and H.L. Schmid, Mathematisches Wörterbuch, Band I, DVW, Berlin (1961), p. 740.
L.J. Rogers, The messanger of mathematics, ed. J.W.L. Glaisher, Vol. XVII (1888) 145.
O. Hölder, Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, Dieterich (1889), pp. 38–47.
J. Blümlein and W.L. van Neerven, Less singular terms and small x evolution in a soluble model, Phys. Lett. B 450 (1999) 412 [hep-ph/9811519] [INSPIRE].
E. Catalan, Mémoire sur la transformation des séries et sur quelques intégrales définies (1. April 1865), Mémoires couronnés et mémoires des savants étrangers 33 (1867) 1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2211.05462
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ablinger, J., Behring, A., Blümlein, J. et al. The unpolarized and polarized single-mass three-loop heavy flavor operator matrix elements Agg,Q and ∆Agg,Q. J. High Energ. Phys. 2022, 134 (2022). https://doi.org/10.1007/JHEP12(2022)134
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2022)134