Abstract
Ultralight scalar dark matter can interact with all massive Standard Model particles through a universal coupling. Such a coupling modifies the Standard Model particle masses and affects the dynamics of Big Bang Nucleosynthesis. We model the cosmological evolution of the dark matter, taking into account the modifications of the scalar mass by the environment as well as the full dynamics of Big Bang Nucleosynthesis. We find that precision measurements of the helium-4 abundance set stringent constraints on the available parameter space, and that these constraints are strongly affected by both the dark matter environmental mass and the dynamics of the neutron freeze-out. Furthermore, we perform the analysis in both the Einstein and Jordan frames, the latter of which allows us to implement the model into numerical Big Bang Nucleosynthesis codes and analyze additional light elements. The numerical analysis shows that the constraint from helium-4 dominates over deuterium, and that the effect on lithium is insufficient to solve the lithium problem. Comparing to several other probes, we find that Big Bang Nucleosynthesis sets the strongest constraints for the majority of the parameter space.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R.D. Peccei and H.R. Quinn, CP conservation in the presence of instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
R.D. Peccei and H.R. Quinn, Constraints imposed by CP conservation in the presence of instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].
S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
F. Wilczek, Problem of strong P and T invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].
A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
A.E. Nelson and J. Scholtz, Dark light, dark matter and the misalignment mechanism, Phys. Rev. D 84 (2011) 103501 [arXiv:1105.2812] [INSPIRE].
P.W. Graham, J. Mardon and S. Rajendran, Vector dark matter from inflationary fluctuations, Phys. Rev. D 93 (2016) 103520 [arXiv:1504.02102] [INSPIRE].
D.J.E. Marsh, Axion cosmology, Phys. Rept. 643 (2016) 1 [arXiv:1510.07633] [INSPIRE].
M. Battaglieri et al., US cosmic visions: new ideas in dark matter 2017: community report, in the proceedings of the U.S. Cosmic Visions: New Ideas in Dark Matter, March 23–25, College Park, U.S.A. (2017), arXiv:1707.04591 [INSPIRE].
C. Pitrou, A. Coc, J.-P. Uzan and E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions, Phys. Rept. 754 (2018) 1 [arXiv:1801.08023] [INSPIRE].
B.D. Fields, K.A. Olive, T.-H. Yeh and C. Young, Big-bang nucleosynthesis after Planck, JCAP 03 (2020) 010 [arXiv:1912.01132] [INSPIRE].
F. Iocco, G. Mangano, G. Miele, O. Pisanti and P.D. Serpico, Primordial nucleosynthesis: from precision cosmology to fundamental physics, Phys. Rept. 472 (2009) 1 [arXiv:0809.0631] [INSPIRE].
M. Pospelov and J. Pradler, Big bang nucleosynthesis as a probe of new physics, Ann. Rev. Nucl. Part. Sci. 60 (2010) 539 [arXiv:1011.1054] [INSPIRE].
E.W. Kolb, M.J. Perry and T.P. Walker, Time variation of fundamental constants, primordial nucleosynthesis and the size of extra dimensions, Phys. Rev. D 33 (1986) 869 [INSPIRE].
B.A. Campbell and K.A. Olive, Nucleosynthesis and the time dependence of fundamental couplings, Phys. Lett. B 345 (1995) 429 [hep-ph/9411272] [INSPIRE].
A. Coc, N.J. Nunes, K.A. Olive, J.-P. Uzan and E. Vangioni, Coupled variations of fundamental couplings and primordial nucleosynthesis, Phys. Rev. D 76 (2007) 023511 [astro-ph/0610733] [INSPIRE].
J.C. Berengut, V.V. Flambaum and V.F. Dmitriev, Effect of quark-mass variation on big bang nucleosynthesis, Phys. Lett. B 683 (2010) 114 [arXiv:0907.2288] [INSPIRE].
J. Alvey, N. Sabti, M. Escudero and M. Fairbairn, Improved BBN constraints on the variation of the gravitational constant, Eur. Phys. J. C 80 (2020) 148 [arXiv:1910.10730] [INSPIRE].
T. Damour and B. Pichon, Big bang nucleosynthesis and tensor-scalar gravity, Phys. Rev. D 59 (1999) 123502 [astro-ph/9807176] [INSPIRE].
A. Coc, K.A. Olive, J.-P. Uzan and E. Vangioni, Big bang nucleosynthesis constraints on scalar-tensor theories of gravity, Phys. Rev. D 73 (2006) 083525 [astro-ph/0601299] [INSPIRE].
A. Coc, K.A. Olive, J.-P. Uzan and E. Vangioni, Non-universal scalar-tensor theories and big bang nucleosynthesis, Phys. Rev. D 79 (2009) 103512 [arXiv:0811.1845] [INSPIRE].
R. Nakamura, M.-a. Hasahimoto, R. Ichimasa and K. Arai, Big-Bang nucleosynthesis: Constraints on nuclear reaction rates, neutrino degeneracy, inhomogeneous and Brans-Dicke models, Int. J. Mod. Phys. E 26 (2017) 1741003 [arXiv:1710.08153] [INSPIRE].
H. Chen, T. Katsuragawa, S. Matsuzaki and T. Qiu, Big bang nucleosynthesis hunts chameleon dark matter, JHEP 02 (2020) 155 [arXiv:1908.04146] [INSPIRE].
J.-P. Uzan, Varying Constants, Gravitation and Cosmology, Living Rev. Rel. 14 (2011) 2 [arXiv:1009.5514] [INSPIRE].
C.M. Will, The confrontation between general relativity and experiment, Living Rev. Rel. 17 (2014) 4 [arXiv:1403.7377] [INSPIRE].
E.G. Adelberger, B.R. Heckel and A.E. Nelson, Tests of the gravitational inverse square law, Ann. Rev. Nucl. Part. Sci. 53 (2003) 77 [hep-ph/0307284] [INSPIRE].
B. Bertotti, L. Iess and P. Tortora, A test of general relativity using radio links with the Cassini spacecraft, Nature 425 (2003) 374 [INSPIRE].
D. Blas, D.L. Nacir and S. Sibiryakov, Ultralight dark matter resonates with binary pulsars, Phys. Rev. Lett. 118 (2017) 261102 [arXiv:1612.06789] [INSPIRE].
D. Blas, D. López Nacir and S. Sibiryakov, Secular effects of ultralight dark matter on binary pulsars, Phys. Rev. D 101 (2020) 063016 [arXiv:1910.08544] [INSPIRE].
Y.V. Stadnik and V.V. Flambaum, Can dark matter induce cosmological evolution of the fundamental constants of Nature?, Phys. Rev. Lett. 115 (2015) 201301 [arXiv:1503.08540] [INSPIRE].
A. Belokon and A. Tokareva, Light scalar dark matter coupled to a trace of energy-momentum tensor, Phys. Rev. D 101 (2020) 103535 [arXiv:1812.04065] [INSPIRE].
A. Arbey, J. Auffinger, K.P. Hickerson and E.S. Jenssen, AlterBBN v2: a public code for calculating Big-Bang nucleosynthesis constraints in alternative cosmologies, Comput. Phys. Commun. 248 (2020) 106982 [arXiv:1806.11095] [INSPIRE].
A. Riotto, Inflation and the theory of cosmological perturbations, ICTP Lect. Notes Ser. 14 (2003) 317 [hep-ph/0210162] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs_3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].
A.L. Erickcek, N. Barnaby, C. Burrage and Z. Huang, Chameleons in the early universe: kicks, rebounds, and particle production, Phys. Rev. D 89 (2014) 084074 [arXiv:1310.5149] [INSPIRE].
V.F. Mukhanov, Nucleosynthesis without a computer, Int. J. Theor. Phys. 43 (2004) 669 [astro-ph/0303073] [INSPIRE].
Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
T. Damour and G. Esposito-Farese, Nonperturbative strong field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett. 70 (1993) 2220 [INSPIRE].
T. Damour and G. Esposito-Farese, Tensor-scalar gravity and binary pulsar experiments, Phys. Rev. D 54 (1996) 1474 [gr-qc/9602056] [INSPIRE].
T. Harada, Stability analysis of spherically symmetric star in scalar-tensor theories of gravity, Prog. Theor. Phys. 98 (1997) 359 [gr-qc/9706014] [INSPIRE].
P. Pani, V. Cardoso, E. Berti, J. Read and M. Salgado, The vacuum revealed: the final state of vacuum instabilities in compact stars, Phys. Rev. D 83 (2011) 081501 [arXiv:1012.1343] [INSPIRE].
J.M. Lattimer, The nuclear equation of state and neutron star masses, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485 [arXiv:1305.3510] [INSPIRE].
R. Consiglio, P.F. de Salas, G. Mangano, G. Miele, S. Pastor and O. Pisanti, PArthENoPE reloaded, Comput. Phys. Commun. 233 (2018) 237 [arXiv:1712.04378] [INSPIRE].
G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept. 198 (1990) 1 [INSPIRE].
N. Bar, K. Blum and G. D’Amico, Is there a supernova bound on axions?, Phys. Rev. D 101 (2020) 123025 [arXiv:1907.05020] [INSPIRE].
K.A. Olive and M. Pospelov, Environmental dependence of masses and coupling constants, Phys. Rev. D 77 (2008) 043524 [arXiv:0709.3825] [INSPIRE].
C. Hanhart, D.R. Phillips, S. Reddy and M.J. Savage, Extra dimensions, SN1987a, and nucleon-nucleon scattering data, Nucl. Phys. B 595 (2001) 335 [nucl-th/0007016] [INSPIRE].
D.J. Kapner et al., Tests of the gravitational inverse-square law below the dark-energy length scale, Phys. Rev. Lett. 98 (2007) 021101 [hep-ph/0611184] [INSPIRE].
E.G. Adelberger et al., Particle physics implications of a recent test of the gravitational inverse sqaure law, Phys. Rev. Lett. 98 (2007) 131104 [hep-ph/0611223] [INSPIRE].
A. Hees, O. Minazzoli, E. Savalle, Y.V. Stadnik and P. Wolf, Violation of the equivalence principle from light scalar dark matter, Phys. Rev. D 98 (2018) 064051 [arXiv:1807.04512] [INSPIRE].
H.-Y. Schive, T. Chiueh and T. Broadhurst, Cosmic structure as the quantum interference of a coherent dark wave, Nature Phys. 10 (2014) 496 [arXiv:1406.6586] [INSPIRE].
B. Bozek, D.J.E. Marsh, J. Silk and R.F.G. Wyse, Galaxy UV-luminosity function and reionization constraints on axion dark matter, Mon. Not. Roy. Astron. Soc. 450 (2015) 209 [arXiv:1409.3544] [INSPIRE].
R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using precision cosmological data, Phys. Rev. D 91 (2015) 103512 [arXiv:1410.2896] [INSPIRE].
V. Iršič, M. Viel, M.G. Haehnelt, J.S. Bolton and G.D. Becker, First constraints on fuzzy dark matter from Lyman-α forest data and hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].
T. Kobayashi, R. Murgia, A. De Simone, V. Iršič and M. Viel, Lyman-α constraints on ultralight scalar dark matter: Implications for the early and late universe, Phys. Rev. D 96 (2017) 123514 [arXiv:1708.00015] [INSPIRE].
N. Bar, D. Blas, K. Blum and S. Sibiryakov, Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation, Phys. Rev. D 98 (2018) 083027 [arXiv:1805.00122] [INSPIRE].
K. Schutz, Subhalo mass function and ultralight bosonic dark matter, Phys. Rev. D 101 (2020) 123026 [arXiv:2001.05503] [INSPIRE].
J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen and N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555 (2018) 67 [arXiv:1810.05912] [INSPIRE].
A. Schneider, Constraining noncold dark matter models with the global 21-cm signal, Phys. Rev. D 98 (2018) 063021 [arXiv:1805.00021] [INSPIRE].
A. Lidz and L. Hui, Implications of a prereionization 21-cm absorption signal for fuzzy dark matter, Phys. Rev. D 98 (2018) 023011 [arXiv:1805.01253] [INSPIRE].
J.M. Sullivan, S. Hirano and V. Bromm, Minimum star-forming halo mass in axion cosmology, Mon. Not. Roy. Astron. Soc. 481 (2018) L69 [arXiv:1809.01679] [INSPIRE].
D.J.E. Marsh and J.C. Niemeyer, Strong constraints on fuzzy dark matter from ultrafaint dwarf galaxy Eridanus II, Phys. Rev. Lett. 123 (2019) 051103 [arXiv:1810.08543] [INSPIRE].
R.N. Manchester, Pulsars and gravity, Int. J. Mod. Phys. D 24 (2015) 1530018 [arXiv:1502.05474] [INSPIRE].
M. Krämer, Pulsars as probes of gravity and fundamental physics, Int. J. Mod. Phys. D 25 (2016) 1630029 [arXiv:1606.03843] [INSPIRE].
N.K. Porayko and K.A. Postnov, Constraints on ultralight scalar dark matter from pulsar timing, Phys. Rev. D 90 (2014) 062008 [arXiv:1408.4670] [INSPIRE].
J.W. Armstrong, L. Iess, P. Tortora and B. Bertotti, Stochastic gravitational wave background: Upper limits in the 10−6 Hz 10−3 Hz band, Astrophys. J. 599 (2003) 806 [INSPIRE].
A. Arvanitaki and S. Dubovsky, Exploring the string axiverse with precision black hole physics, Phys. Rev. D 83 (2011) 044026 [arXiv:1004.3558] [INSPIRE].
R. Brito, V. Cardoso and P. Pani, Superradiance: new frontiers in black hole physics, Lect. Notes Phys. 906 (2015) 1 [arXiv:1501.06570] [INSPIRE].
D.E. Kaplan, S. Rajendran and P. Riggins, Particle probes with superradiant pulsars, arXiv:1908.10440 [INSPIRE].
A. Arvanitaki, M. Baryakhtar and X. Huang, Discovering the QCD axion with black holes and gravitational waves, Phys. Rev. D 91 (2015) 084011 [arXiv:1411.2263] [INSPIRE].
Event Horizon Telescope collaboration, First M87 event horizon telescope results. I. The shadow of the supermassive black hole, Astrophys. J. 875 (2019) L1 [arXiv:1906.11238] [INSPIRE].
H. Davoudiasl and P.B. Denton, Ultralight boson dark matter and event horizon telescope observations of M87*, Phys. Rev. Lett. 123 (2019) 021102 [arXiv:1904.09242] [INSPIRE].
M.A. Abramowicz and P. Fragile, Foundations of black hole accretion disk theory, Living Rev. Rel. 16 (2013) 1 [arXiv:1104.5499] [INSPIRE].
M.J. Stott and D.J.E. Marsh, Black hole spin constraints on the mass spectrum and number of axionlike fields, Phys. Rev. D 98 (2018) 083006 [arXiv:1805.02016] [INSPIRE].
H. Fukuda and K. Nakayama, Aspects of nonlinear effect on black hole superradiance, JHEP 01 (2020) 128 [arXiv:1910.06308] [INSPIRE].
A. Mathur, S. Rajendran and E.H. Tanin, Clockwork mechanism to remove superradiance limits, Phys. Rev. D 102 (2020) 055015 [arXiv:2004.12326] [INSPIRE].
I.I. Tkachev, Coherent scalar field oscillations forming compact astrophysical objects, Sov. Astron. Lett. 12 (1986) 305 [Pisma Astron. Zh. 12 (1986) 726] [INSPIRE].
J. Goodman, Repulsive dark matter, New Astron. 5 (2000) 103 [astro-ph/0003018] [INSPIRE].
P.J.E. Peebles, Fluid dark matter, Astrophys. J. Lett. 534 (2000) L127 [astro-ph/0002495] [INSPIRE].
A. Arvanitaki, J. Huang and K. Van Tilburg, Searching for dilaton dark matter with atomic clocks, Phys. Rev. D 91 (2015) 015015 [arXiv:1405.2925] [INSPIRE].
J. Fan, Ultralight repulsive dark matter and BEC, Phys. Dark Univ. 14 (2016) 84 [arXiv:1603.06580] [INSPIRE].
J. Gasser and H. Leutwyler, Quark masses, Phys. Rept. 87 (1982) 77 [INSPIRE].
S. Borsányi et al., Ab initio calculation of the neutron-proton mass difference, Science 347 (2015) 1452 [arXiv:1406.4088] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2006.04820
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Sibiryakov, S., Sørensen, P. & Yu, TT. BBN constraints on universally-coupled ultralight scalar dark matter. J. High Energ. Phys. 2020, 75 (2020). https://doi.org/10.1007/JHEP12(2020)075
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2020)075