Abstract
We investigate the phenomenological aspects of non-perturbative baryon- and lepton-number-violating processes at hadron colliders. Such processes, induced by instan- ton/sphaleron configurations of the electroweak gauge fields, are believed to play a crucial role in the generation of baryon asymmetry in the early Universe at finite temperature. On the other hand, at colliders (that represent the zero-temperature high-energy regime) the rate and observability of such processes are still under debate. Motivated by current the- oretical considerations, we construct a modern event generator within the general-purpose Herwig Monte Carlo framework, that aims to capture the most relevant features of the dominant processes. We perform a detailed phenomenological analysis focussing on the Large Hadron Collider, at 13 TeV proton-proton centre-of-mass energy, a potential high- energy upgrade at 27 TeV and the proposed Future Circular Collider (FCC-hh) at 100 TeV. We derive constraints on the expected rates for various parametrisations of our model. We find that all three colliders are capable of providing meaningful information on the nature of instanton/sphaleron-induced processes at various energy scales.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
G. ’t Hooft, Symmetry breaking through Bell-Jackiw anomalies, Phys. Rev. Lett.37 (1976) 8 [INSPIRE].
Wikipedia, Per aspera ad astra — Wikipedia, the free encyclopedia (2019).
A. Ringwald, High-energy breakdown of perturbation theory in the electroweak instanton sector, Nucl. Phys.B 330 (1990) 1 [INSPIRE].
O. Espinosa, High-energy behavior of baryon and lepton number violating scattering amplitudes and breakdown of unitarity in the standard model, Nucl. Phys.B 343 (1990) 310 [INSPIRE].
P.B. Arnold and L.D. McLerran, The sphaleron strikes back, Phys. Rev.D 37 (1988) 1020 [INSPIRE].
L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Electroweak interactions become strong at energy above approximately 10 TeV, Phys. Rev.D 42 (1990) 171 [INSPIRE].
L.D. McLerran, A.I. Vainshtein and M.B. Voloshin, Strong instanton induced amplitudes in a weakly coupled theory, Phys. Rev.D 42 (1990) 180 [INSPIRE].
M.P. Mattis, The riddle of high-energy baryon number violation, Phys. Rept.214 (1992) 159 [INSPIRE].
F.L. Bezrukov et al., Semiclassical study of baryon and lepton number violation in high-energy electroweak collisions, Phys. Rev.D 68 (2003) 036005 [hep-ph/0304180] [INSPIRE].
F.R. Klinkhamer and N.S. Manton, A saddle point solution in the Weinberg-Salam theory, Phys. Rev.D 30 (1984) 2212 [INSPIRE].
K. Funakubo, K. Fuyuto and E. Senaha, Does a band structure affect sphaleron processes?, arXiv:1612.05431 [INSPIRE].
A. Ringwald, Electroweak instantons/sphalerons at VLHC?, Phys. Lett.B 555 (2003) 227 [hep-ph/0212099] [INSPIRE].
A. Ringwald, An upper bound on the total cross-section for electroweak baryon number violation, JHEP10 (2003) 008 [hep-ph/0307034] [INSPIRE].
S.H.H. Tye and S.S.C. Wong, Baryon number violating scatterings in laboratories, Phys. Rev.D 96 (2017) 093004 [arXiv:1710.07223] [INSPIRE].
S.H.H. Tye and S.S.C. Wong, Bloch wave function for the periodic sphaleron potential and unsuppressed baryon and lepton number violating processes, Phys. Rev.D 92 (2015) 045005 [arXiv:1505.03690] [INSPIRE].
J. Ellis and K. Sakurai, Search for sphalerons in proton-proton collisions, JHEP04 (2016) 086 [arXiv:1601.03654] [INSPIRE].
J. Ellis, K. Sakurai and M. Spannowsky, Search for sphalerons: IceCube vs. LHC, JHEP05 (2016) 085 [arXiv:1603.06573] [INSPIRE].
G. Brooijmans, P. Schichtel and M. Spannowsky, Cosmic ray air showers from sphalerons, Phys. Lett.B 761 (2016) 213 [arXiv:1602.00647] [INSPIRE].
M. Spannowsky and C. Tamarit, Sphalerons in composite and non-standard Higgs models, Phys. Rev.D 95 (2017) 015006 [arXiv:1611.05466] [INSPIRE].
Y. Jho and S.C. Park, Constraining new physics with high multiplicity: I. Ultra-high energy cosmic rays on air-shower detector arrays, arXiv:1806.03063 [INSPIRE].
D.G. Cerdeño, P. Reimitz, K. Sakurai and C. Tamarit, B + L violation at colliders and new physics, JHEP04 (2018) 076 [arXiv:1801.03492] [INSPIRE].
A. Ringwald, K. Sakurai and B.R. Webber, Limits on electroweak instanton-induced processes with multiple boson production, JHEP11 (2018) 105 [arXiv:1809.10833] [INSPIRE].
L.A. Anchordoqui and I. Antoniadis, Supersymmetric sphaleron configurations as the origin of the perplexing ANITA events, Phys. Lett.B 790 (2019) 578 [arXiv:1812.01520] [INSPIRE].
A. Papaefstathiou and K. Sakurai, Determining the helicity structure of third generation resonances, JHEP06 (2012) 069 [arXiv:1112.3956] [INSPIRE].
M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J.C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].
S. Gieseke et al., HERWIG++ 2.5 release note, arXiv:1102.1672 [INSPIRE].
K. Arnold et al., HERWIG++ 2.6 release note, arXiv:1205.4902 [INSPIRE].
J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
J. Bellm et al., HERWIG 7.0/HERWIG++ 3.0 release note, Eur. Phys. J.C 76 (2016) 196 [arXiv:1512.01178] [INSPIRE].
J. Bellm et al., HERWIG 7.1 release note, arXiv:1705.06919 [INSPIRE].
M. Gibbs, A. Ringwald and F. Schrempp, QCD instanton induced final states in deep inelastic scattering, in the proceedings of the Deep inelastic scattering and QCD, April 24–28, Paris, France (1995), hep-ph/9506392 [INSPIRE].
S. Moch, A. Ringwald and F. Schrempp, Instantons in deep inelastic scattering: The Simplest process, Nucl. Phys.B 507 (1997) 134 [hep-ph/9609445] [INSPIRE].
A. Ringwald and F. Schrempp, QCDINS 2.0: a Monte Carlo generator for instanton induced processes in deep inelastic scattering, Comput. Phys. Commun.132 (2000) 267 [hep-ph/9911516] [INSPIRE].
C.M. Harris, P. Richardson and B.R. Webber, CHARYBDIS: a black hole event generator, JHEP08 (2003) 033 [hep-ph/0307305] [INSPIRE].
C.M. Harris et al., Exploring higher dimensional black holes at the large hadron collider, JHEP05 (2005) 053 [hep-ph/0411022] [INSPIRE].
J.A. Frost et al., Phenomenology of production and decay of spinning extra-dimensional black holes at hadron colliders, JHEP10 (2009) 014 [arXiv:0904.0979] [INSPIRE].
D.-C. Dai et al., BlackMax: a black-hole event generator with rotation, recoil, split branes and brane tension, Phys. Rev.D 77 (2008) 076007 [arXiv:0711.3012] [INSPIRE].
V.V. Khoze and M. Spannowsky, Higgsplosion: solving the hierarchy problem via rapid decays of heavy states into multiple Higgs bosons, Nucl. Phys.B 926 (2018) 95 [arXiv:1704.03447] [INSPIRE].
P. Richardson, Simulations of R-parity violating SUSY models, Ph.D. thesis, Oxford University, Oxford U.K. (2000), hep-ph/0101105 [INSPIRE].
R. Kleiss, W.J. Stirling and S.D. Ellis, A New Monte carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun.40 (1986) 359 [INSPIRE].
S. Plätzer, RAMBO on diet, arXiv:1308.2922 [INSPIRE].
R. Kleiss and W.J. Stirling, Massive multiplicities and Monte Carlo, Nucl. Phys.B 385 (1992) 413 [INSPIRE].
V.V. Khoze and A. Ringwald, Total cross-section for anomalous fermion number violation via dispersion relation, Nucl. Phys.B 355 (1991) 351 [INSPIRE].
CMS collaboration, Search for black holes and sphalerons in high-multiplicity final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP11 (2018) 042 [arXiv:1805.06013] [INSPIRE].
M.J. Gibbs and B.R. Webber, HERBVI: a program for simulation of baryon and lepton number violating processes, Comput. Phys. Commun.90 (1995) 369 [hep-ph/9504232] [INSPIRE].
G.R. Farrar and R.-b. Meng, Baryon number violation in high-energy collisions, Phys. Rev. Lett.65 (1990) 3377 [INSPIRE].
M.J. Gibbs, A. Ringwald, B.R. Webber and J.T. Zadrozny, Monte Carlo simulation of baryon and lepton number violating processes at high-energies, Z. Phys.C 66 (1995) 285 [hep-ph/9406266] [INSPIRE].
J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J. Phys.G 43 (2016) 023001 [arXiv:1510.03865] [INSPIRE].
A. Papaefstathiou, K. Sakurai and S. Plaetzer, A Monte Carlo event generator for instanton/sphaleron processes in HERWIG, (2019).
S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
M. Selvaggi, DELPHES 3: a modular framework for fast-simulation of generic collider experiments, J. Phys. Conf. Ser.523 (2014) 012033 [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-k tjet clustering algorithm, JHEP04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J.C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
M. Guzzi et al., CT10 parton distributions and other developments in the global QCD analysis, arXiv:1101.0561 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1910.04761
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Papaefstathiou, A., Plätzer, S. & Sakurai, K. On the phenomenology of sphaleron-induced processes at the LHC and beyond. J. High Energ. Phys. 2019, 17 (2019). https://doi.org/10.1007/JHEP12(2019)017
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP12(2019)017