Abstract
Middle cohomology states on the Higgs branch of supersymmetric quiver quantum mechanics — also known as pure Higgs states — have recently emerged as possible microscopic candidates for single-centered black hole micro-states, as they carry zero angular momentum and appear to be robust under wall-crossing. Using the connection between quiver quantum mechanics on the Coulomb branch and the quantum mechanics of multi-centered black holes, we propose a general algorithm for reconstructing the full moduli-dependent cohomology of the moduli space of an arbitrary quiver, in terms of the BPS invariants of the pure Higgs states. We analyze many examples of quivers with loops, including all cyclic Abelian quivers and several examples with two loops or non-Abelian gauge groups, and provide supporting evidence for this proposal. We also develop methods to count pure Higgs states directly.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
F. Denef, Supergravity flows and D-brane stability, JHEP 08 (2000) 050 [hep-th/0005049] [INSPIRE].
F. Denef, Quantum quivers and Hall/hole halos, JHEP 10 (2002) 023 [hep-th/0206072] [INSPIRE].
B. Bates and F. Denef, Exact solutions for supersymmetric stationary black hole composites, JHEP 11 (2011) 127 [hep-th/0304094] [INSPIRE].
F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].
M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].
J. Manschot, B. Pioline and A. Sen, Wall crossing from Boltzmann black hole halos, JHEP 07 (2011) 059 [arXiv:1011.1258] [INSPIRE].
B. Pioline, Four ways across the wall, J. Phys. Conf. Ser. 346 (2012) 012017 [arXiv:1103.0261] [INSPIRE].
C. Bachas and E. Kiritsis, F 4 terms in N = 4 string vacua, Nucl. Phys. Proc. Suppl. 55B (1997) 194 [hep-th/9611205] [INSPIRE].
A. Gregori et al., R 2 corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [INSPIRE].
D. Gaiotto, G.W. Moore and A. Neitzke, Framed BPS states, arXiv:1006.0146 [INSPIRE].
J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, JHEP 05 (2009) 002 [arXiv:0807.4556] [INSPIRE].
J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, JHEP 02 (2010) 062 [arXiv:0906.0011] [INSPIRE].
S. Lee and P. Yi, Framed BPS states, moduli dynamics and wall-crossing, JHEP 04 (2011) 098 [arXiv:1102.1729] [INSPIRE].
H. Kim, J. Park, Z. Wang and P. Yi, Ab initio wall-crossing, JHEP 09 (2011) 079 [arXiv:1107.0723] [INSPIRE].
J. Manschot, B. Pioline and A. Sen, A fixed point formula for the index of multi-centered N =2 black holes,JHEP 05 (2011) 057 [arXiv:1103.1887] [INSPIRE].
A. Sen, Arithmetic of quantum entropy function, JHEP 08 (2009) 068 [arXiv:0903.1477] [INSPIRE].
A. Sen, How do black holes predict the sign of the Fourier coefficients of Siegel modular forms?, Gen. Rel. Grav. 43 (2011) 2171 [arXiv:1008.4209] [INSPIRE].
A. Dabholkar, J. Gomes, S. Murthy and A. Sen, Supersymmetric index from black hole entropy, JHEP 04 (2011) 034 [arXiv:1009.3226] [INSPIRE].
I. Bena, M. Berkooz, J. de Boer, S. El-Showk and D. Van den Bleeken, Scaling BPS solutions and pure-Higgs states, arXiv:1205.5023 [INSPIRE].
S.-J. Lee, Z.-L. Wang and P. Yi, Quiver invariants from intrinsic Higgs states, JHEP 07 (2012) 169 [arXiv:1205.6511] [INSPIRE].
A. Sen, Equivalence of three wall crossing formulae, arXiv:1112.2515 [INSPIRE].
S.-J. Lee, Z.-L. Wang and P. Yi, BPS states, refined indices and quiver invariants, JHEP 10 (2012) 094 [arXiv:1207.0821] [INSPIRE].
F. Hirzebruch, Topological methods in algebraic geometry, Springer, (1978) revised edition, Germany (1995).
E. Diaconescu and G.W. Moore, Crossing the wall: branes versus bundles, Adv. Theor. Math. Phys. 14 (2010) [arXiv:0706.3193] [INSPIRE].
P. Griffiths and J. Harris, Principles of algebraic geometry, Wiley, U.S.A. (1994).
F.C. Kirwan, Cohomology of quotients in symplectic and algebraic geometry, Princeton University Press, Princeton U.S.A. (1984).
G. Harder and M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann. 212 (1975) 215.
M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Phil. Trans. Roy. Soc. Lond. A 308 (1983) 523 [INSPIRE].
J. Manschot, BPS invariants of semi-stable sheaves on rational surfaces, arXiv:1109.4861 [INSPIRE].
M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli, Invent. Math. 152 (2003) 349 [math.QA/0204059].
J. Engel and M. Reineke, Smooth models of quiver moduli, Math. Z. 262 (2009) 817 [arXiv:0706.4306].
D. Joyce, Configurations in Abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008) 125 [math.AG/0410268].
D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217 (2012) [arXiv:0810.5645] [INSPIRE].
D. Joyce, Generalized Donaldson-Thomas invariants, arXiv:0910.0105 [INSPIRE].
S. Even and J. Gillis, Derangements and Laguerre polynomials, Math. Proc. Camb. Phil. Soc. 79 (1976) 135.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1207.2230
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Manschot, J., Pioline, B. & Sen, A. From black holes to quivers. J. High Energ. Phys. 2012, 23 (2012). https://doi.org/10.1007/JHEP11(2012)023
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2012)023