Abstract
Extremal black branes are of interest because they correspond to the ground states of field theories at finite charge density in gauge/gravity duality. The geometry of such a brane need not be translationally invariant in the spatial directions along which it extends. A less restrictive requirement is that of homogeneity, which still allows points along the spatial directions to be related to each other by symmetries. In this paper, we find large new classes of homogeneous but anisotropic extremal black brane horizons, which could naturally arise in gauge/gravity dual pairs. In 4+1 dimensional spacetime, we show that such homogeneous black brane solutions are classified by the Bianchi classification, which is well known in the study of cosmology, and fall into nine classes. In a system of Einstein gravity with negative cosmological term coupled to one or two massive Abelian gauge fields, we find solutions with an additional scaling symmetry, which could correspond to the near-horizon geometries of such extremal black branes. These solutions realize many of the Bianchi classes. In one case, we construct the complete extremal solution which asymptotes to AdS space.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
L.D. Landau and E.M. Lifshitz, The classical theory of fields, Pergamon Press, U.K. (1980).
M.P. Ryan and L.C. Shepley, Homogeneous relativistic cosmologies, Princeton Series in Physics, Princeton University Press, Princeton U.S.A. (1975).
M. Kataoka and O. Nakanishi, Helical spin density wave due to antisymmetric exchange interaction, J. Phys. Soc. Jpn. 50 (1981) 3888.
M.L. Plumer and M.B. Walker, Wavevector and spin reorientation in MnSi, J. Phys. C 14 (1981) 4689.
P. Fulde and R.A. Ferell, Superconductivity in a strong spin-exchange field, Phys. Rev. 135 (1964) A550.
A.I. Larkin and Y.N. Ovchinnikov, Inhomogeneous state of superconductors, Sov. Phys. JETP 20 (1965) 762.
D. Deryagin, D.Y. Grigoriev and V. Rubakov, Standing wave ground state in high density, zero temperature QCD at large-N c , Int. J. Mod. Phys. A 7 (1992) 659 [INSPIRE].
S.A. Brazovskii, Phase transition of an isotropic system to a nonuniform state, Sov. Phys. JETP 41 (1975) 85.
S.K. Domokos and J.A. Harvey, Baryon number-induced Chern-Simons couplings of vector and axial-vector mesons in holographic QCD, Phys. Rev. Lett. 99 (2007) 141602 [arXiv:0704.1604] [INSPIRE].
S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
H. Ooguri and C.-S. Park, Holographic end-point of spatially modulated phase transition, Phys. Rev. D 82 (2010) 126001 [arXiv:1007.3737] [INSPIRE].
H. Ooguri and C.-S. Park, Spatially modulated phase in holographic quark-gluon plasma, Phys. Rev. Lett. 106 (2011) 061601 [arXiv:1011.4144] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic helical superconductors, JHEP 12 (2011) 091 [arXiv:1109.3866] [INSPIRE].
A. Donos, J.P. Gauntlett and C. Pantelidou, Spatially modulated instabilities of magnetic black branes, JHEP 01 (2012) 061 [arXiv:1109.0471] [INSPIRE].
A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140 [arXiv:1106.2004] [INSPIRE].
D. Marolf, Black holes and branes in supergravity, arXiv:1107.1022 [INSPIRE].
H.K. Kunduri, J. Lucietti and H.S. Reall, Near-horizon symmetries of extremal black holes, Class. Quant. Grav. 24 (2007) 4169 [arXiv:0705.4214] [INSPIRE].
S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev. D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [INSPIRE].
R. Gregory and R. Laflamme, Black strings and p-branes are unstable, Phys. Rev. Lett. 70 (1993) 2837 [hep-th/9301052] [INSPIRE].
R. Gregory and R. Laflamme, The instability of charged black strings and p-branes, Nucl. Phys. B 428 (1994) 399 [hep-th/9404071] [INSPIRE].
L. Lehner and F. Pretorius, Final state of Gregory-Laflamme instability, arXiv:1106.5184 [INSPIRE].
S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE].
M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].
K. Balasubramanian and K. Narayan, Lifshitz spacetimes from AdS null and cosmological solutions, JHEP 08 (2010) 014 [arXiv:1005.3291] [INSPIRE].
A. Donos and J.P. Gauntlett, Lifshitz solutions of D = 10 and D = 11 supergravity, JHEP 12 (2010) 002 [arXiv:1008.2062] [INSPIRE].
R. Gregory, S.L. Parameswaran, G. Tasinato and I. Zavala, Lifshitz solutions in supergravity and string theory, JHEP 12 (2010) 047 [arXiv:1009.3445] [INSPIRE].
A. Donos, J.P. Gauntlett, N. Kim and O. Varela, Wrapped M 5-branes, consistent truncations and AdS/CMT, JHEP 12 (2010) 003 [arXiv:1009.3805] [INSPIRE].
D. Cassani and A.F. Faedo, Constructing Lifshitz solutions from AdS, JHEP 05 (2011) 013 [arXiv:1102.5344] [INSPIRE].
N. Halmagyi, M. Petrini and A. Zaffaroni, Non-relativistic solutions of N = 2 gauged supergravity, JHEP 08 (2011) 041 [arXiv:1102.5740] [INSPIRE].
S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [INSPIRE].
S. Bellucci, S. Ferrara, R. Kallosh and A. Marrani, Extremal black hole and flux vacua attractors, Lect. Notes Phys. 755 (2008) 115 [arXiv:0711.4547] [INSPIRE].
S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [INSPIRE].
G.W. Gibbons, R. Kallosh and B. Kol, Moduli, scalar charges and the first law of black hole thermodynamics, Phys. Rev. Lett. 77 (1996) 4992 [hep-th/9607108] [INSPIRE].
A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].
K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Non-supersymmetric attractors, Phys. Rev. D 72 (2005) 124021 [hep-th/0507096] [INSPIRE].
R. Kallosh, N. Sivanandam and M. Soroush, The non-BPS black hole attractor equation, JHEP 03 (2006) 060 [hep-th/0602005] [INSPIRE].
S. Kachru, R. Kallosh and M. Shmakova, Generalized attractor points in gauged supergravity, Phys. Rev. D 84 (2011) 046003 [arXiv:1104.2884] [INSPIRE].
C.M. Brown and O. DeWolfe, The Godel-Schrödinger spacetime and stringy chronology protection, JHEP 01 (2012) 032 [arXiv:1110.3840] [INSPIRE].
G.T. Horowitz and B. Way, Lifshitz singularities, Phys. Rev. D 85 (2012) 046008 [arXiv:1111.1243] [INSPIRE].
C. Charmousis, B. Gouteraux, B. Kim, E. Kiritsis and R. Meyer, Effective holographic theories for low-temperature condensed matter systems, JHEP 11 (2010) 151 [arXiv:1005.4690] [INSPIRE].
E. Perlmutter, Domain wall holography for finite temperature scaling solutions, JHEP 02 (2011) 013 [arXiv:1006.2124] [INSPIRE].
N. Iizuka, N. Kundu, P. Narayan and S.P. Trivedi, Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity, JHEP 01 (2012) 094 [arXiv:1105.1162] [INSPIRE].
B. Gouteraux and E. Kiritsis, Generalized holographic quantum criticality at finite density, JHEP 12 (2011) 036 [arXiv:1107.2116] [INSPIRE].
N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].
L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].
X. Dong, S. Harrison, S. Kachru, G. Torroba and H. Wang, Aspects of holography for theories with hyperscaling violation, JHEP 06 (2012) 041 [arXiv:1201.1905] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1201.4861
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Iizuka, N., Kachru, S., Kundu, N. et al. Bianchi attractors: a classification of extremal black brane geometries. J. High Energ. Phys. 2012, 193 (2012). https://doi.org/10.1007/JHEP07(2012)193
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2012)193