Abstract
Due to the inclination for forward gauge radiation, lepton colliders beyond a few TeV are effectively electroweak (EW) boson colliders, suggesting the treatment of EW bosons as constituents of high-energy leptons. In the context of a muon collider, we revisit the validity of W and Z parton distribution functions (PDFs) at leading order in 2 → n process. We systematically investigate universal and quasi-universal power-law and logarithmic corrections that arise when deriving (polarized) weak boson PDFs in the collinear limit. We go on to survey a multitude of 2 → n processes at \( \sqrt{s} \) = 2–30 TeV via polarized and unpolarized EW boson fusion/scattering. To conduct this study, we report a public implementation of the Effective W/Z and Weizsäcker-Williams Approximations, which we collectively call the Effective Vector Boson Approximation, into the Monte Carlo event generator MadGraph5_aMC@NLO. This implementation lays the groundwork for developing matrix-element matching prescriptions involving EW parton showers and renormalized EW PDFs. To further with this agenda, we give recommendations on using W/Z PDFs.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Z. Nagy and D. E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].
F. Krauss, P. Petrov, M. Schoenherr and M. Spannowsky, Measuring collinear W emissions inside jets, Phys. Rev. D 89 (2014) 114006 [arXiv:1403.4788] [INSPIRE].
A. Hook and A. Katz, Unbroken SU(2) at a 100 TeV collider, JHEP 09 (2014) 175 [arXiv:1407.2607] [INSPIRE].
J. Chen, T. Han and B. Tweedie, Electroweak Splitting Functions and High Energy Showering, JHEP 11 (2017) 093 [arXiv:1611.00788] [INSPIRE].
S. Dawson, The Effective W Approximation, Nucl. Phys. B 249 (1985) 42 [INSPIRE].
G. L. Kane, W. W. Repko and W. B. Rolnick, The Effective W+-, Z0 Approximation for High-Energy Collisions, Phys. Lett. B 148 (1984) 367 [INSPIRE].
Z. Kunszt and D. E. Soper, On the Validity of the Effective W Approximation, Nucl. Phys. B 296 (1988) 253 [INSPIRE].
E. Witten, Heavy Quark Contributions to Deep Inelastic Scattering, Nucl. Phys. B 104 (1976) 445 [INSPIRE].
R. M. Barnett, H. E. Haber and D. E. Soper, Ultraheavy Particle Production from Heavy Partons at Hadron Colliders, Nucl. Phys. B 306 (1988) 697 [INSPIRE].
F. I. Olness and W.-K. Tung, When Is a Heavy Quark Not a Parton? Charged Higgs Production and Heavy Quark Mass Effects in the QCD Based Parton Model, Nucl. Phys. B 308 (1988) 813 [INSPIRE].
J. C. Collins, Hard scattering factorization with heavy quarks: A General treatment, Phys. Rev. D 58 (1998) 094002 [hep-ph/9806259] [INSPIRE].
M. A. G. Aivazis, F. I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 1. General formalism and kinematics of charged current and neutral current production processes, Phys. Rev. D 50 (1994) 3085 [hep-ph/9312318] [INSPIRE].
M. A. G. Aivazis, J. C. Collins, F. I. Olness and W.-K. Tung, Leptoproduction of heavy quarks. 2. A Unified QCD formulation of charged and neutral current processes from fixed target to collider energies, Phys. Rev. D 50 (1994) 3102 [hep-ph/9312319] [INSPIRE].
S. Dawson, A. Ismail and I. Low, Redux on “When is the top quark a parton?”, Phys. Rev. D 90 (2014) 014005 [arXiv:1405.6211] [INSPIRE].
T. Han, J. Sayre and S. Westhoff, Top-Quark Initiated Processes at High-Energy Hadron Colliders, JHEP 04 (2015) 145 [arXiv:1411.2588] [INSPIRE].
C. F. von Weizsacker, Radiation emitted in collisions of very fast electrons, Z. Phys. 88 (1934) 612 [INSPIRE].
E. J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae, Phys. Rev. 45 (1934) 729 [INSPIRE].
M. J. Duncan, G. L. Kane and W. W. Repko, W W Physics at Future Colliders, Nucl. Phys. B 272 (1986) 517 [INSPIRE].
D. A. Dicus, K. J. Kallianpur and S. S. D. Willenbrock, Higgs Boson Pair Production in the Effective W Approximation, Phys. Lett. B 200 (1988) 187 [INSPIRE].
G. Altarelli, B. Mele and F. Pitolli, Heavy Higgs Production at Future Colliders, Nucl. Phys. B 287 (1987) 205 [INSPIRE].
K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].
J. Brehmer, J. Jaeckel and T. Plehn, Polarized WW Scattering on the Higgs Pole, Phys. Rev. D 90 (2014) 054023 [arXiv:1404.5951] [INSPIRE].
S. S. D. Willenbrock and D. A. Dicus, Production of Heavy Quarks from W Gluon Fusion, Phys. Rev. D 34 (1986) 155 [INSPIRE].
S. Dawson and S. S. D. Willenbrock, Heavy Fermion Production in the Effective W Approximation, Nucl. Phys. B 284 (1987) 449 [INSPIRE].
P. Ciafaloni and D. Comelli, Electroweak evolution equations, JHEP 11 (2005) 022 [hep-ph/0505047] [INSPIRE].
T. Han, Y. Ma and K. Xie, High energy leptonic collisions and electroweak parton distribution functions, Phys. Rev. D 103 (2021) L031301 [arXiv:2007.14300] [INSPIRE].
S. Catani, F. Krauss, R. Kuhn and B. R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].
F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].
M. L. Mangano, M. Moretti, F. Piccinini and M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions, JHEP 01 (2007) 013 [hep-ph/0611129] [INSPIRE].
N. Lavesson and L. Lönnblad, Extending CKKW-merging to One-Loop Matrix Elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].
ATLAS collaboration, Fiducial, total and differential cross-section measurements of t-channel single top-quark production in pp collisions at 8 TeV using data collected by the ATLAS detector, Eur. Phys. J. C 77 (2017) 531 [arXiv:1702.02859] [INSPIRE].
CMS collaboration, Search for anomalous electroweak production of vector boson pairs in association with two jets in proton-proton collisions at 13 TeV, Phys. Lett. B 798 (2019) 134985 [arXiv:1905.07445] [INSPIRE].
ATLAS collaboration, Observation of electroweak production of a same-sign W boson pair in association with two jets in pp collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. Lett. 123 (2019) 161801 [arXiv:1906.03203] [INSPIRE].
CMS collaboration, Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 80 (2020) 370 [arXiv:1907.08330] [INSPIRE].
N. Arkani-Hamed, T. Han, M. Mangano and L.-T. Wang, Physics opportunities of a 100 TeV proton-proton collider, Phys. Rept. 652 (2016) 1 [arXiv:1511.06495] [INSPIRE].
M. Ahmad et al., CEPC-SPPC Preliminary Conceptual Design Report. 1. Physics and Detector, IHEP-CEPC-DR-2015-01, IHEP-TH-2015-01, IHEP-EP-2015-01 (2015) [INSPIRE].
FCC collaboration, FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1, Eur. Phys. J. C 79 (2019) 474 [INSPIRE].
FCC collaboration, FCC-hh: The Hadron Collider : Future Circular Collider Conceptual Design Report Volume 3, Eur. Phys. J. ST 228 (2019) 755 [INSPIRE].
FCC collaboration, HE-LHC: The High-Energy Large Hadron Collider : Future Circular Collider Conceptual Design Report Volume 4, Eur. Phys. J. ST 228 (2019) 1109 [INSPIRE].
R. K. Ellis et al., Physics Briefing Book : Input for the European Strategy for Particle Physics Update 2020, arXiv:1910.11775 [INSPIRE].
European Strategy Group collaboration, 2020 Update of the European Strategy for Particle Physics, CERN-ESU-013 (2020).
A. Costantini et al., Vector boson fusion at multi-TeV muon colliders, JHEP 09 (2020) 080 [arXiv:2005.10289] [INSPIRE].
D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing Vectors into Scalars at High Energy Lepton Colliders, JHEP 11 (2018) 144 [arXiv:1807.04743] [INSPIRE].
M. Ruhdorfer, E. Salvioni and A. Weiler, A Global View of the Off-Shell Higgs Portal, SciPost Phys. 8 (2020) 027 [arXiv:1910.04170] [INSPIRE].
M. Chiesa, F. Maltoni, L. Mantani, B. Mele, F. Piccinini and X. Zhao, Measuring the quartic Higgs self-coupling at a multi-TeV muon collider, JHEP 09 (2020) 098 [arXiv:2003.13628] [INSPIRE].
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, Discovering the physics of (g − 2)μ at future muon colliders, Phys. Rev. D 103 (2021) 075028 [arXiv:2006.16277] [INSPIRE].
K. Long, D. Lucchesi, M. Palmer, N. Pastrone, D. Schulte and V. Shiltsev, Muon colliders to expand frontiers of particle physics, Nature Phys. 17 (2021) 289 [arXiv:2007.15684] [INSPIRE].
T. Han, D. Liu, I. Low and X. Wang, Electroweak couplings of the Higgs boson at a multi-TeV muon collider, Phys. Rev. D 103 (2021) 013002 [arXiv:2008.12204] [INSPIRE].
T. Han, Z. Liu, L.-T. Wang and X. Wang, WIMPs at High Energy Muon Colliders, Phys. Rev. D 103 (2021) 075004 [arXiv:2009.11287] [INSPIRE].
D. Buttazzo, R. Franceschini and A. Wulzer, Two Paths Towards Precision at a Very High Energy Lepton Collider, JHEP 05 (2021) 219 [arXiv:2012.11555] [INSPIRE].
W. Yin and M. Yamaguchi, Muon g − 2 at multi-TeV muon collider, arXiv:2012.03928 [INSPIRE].
R. Capdevilla, D. Curtin, Y. Kahn and G. Krnjaic, No-lose theorem for discovering the new physics of (g − 2)μ at muon colliders, Phys. Rev. D 105 (2022) 015028 [arXiv:2101.10334] [INSPIRE].
W. Liu and K.-P. Xie, Probing electroweak phase transition with multi-TeV muon colliders and gravitational waves, JHEP 04 (2021) 015 [arXiv:2101.10469] [INSPIRE].
S. Bottaro, A. Strumia and N. Vignaroli, Minimal Dark Matter bound states at future colliders, JHEP 06 (2021) 143 [arXiv:2103.12766] [INSPIRE].
T. Han, S. Li, S. Su, W. Su and Y. Wu, Heavy Higgs bosons in 2HDM at a muon collider, Phys. Rev. D 104 (2021) 055029 [arXiv:2102.08386] [INSPIRE].
T. Han, Y. Ma and K. Xie, Quark and gluon contents of a lepton at high energies, JHEP 02 (2022) 154 [arXiv:2103.09844] [INSPIRE].
H. Al Ali et al., The Muon Smasher’s Guide, arXiv:2103.14043 [INSPIRE].
R. Franceschini and M. Greco, Higgs and BSM Physics at the Future Muon Collider, Symmetry 13 (2021) 851 [arXiv:2104.05770] [INSPIRE].
D. Buarque Franzosi et al., Vector boson scattering processes: Status and prospects, Rev. Phys. 8 (2022) 100071 [arXiv:2106.01393] [INSPIRE].
T. Yang et al., Longitudinally polarized ZZ scattering at a muon collider, Phys. Rev. D 104 (2021) 093003 [arXiv:2107.13581] [INSPIRE].
T. Han et al., Precision test of the muon-Higgs coupling at a high-energy muon collider, JHEP 12 (2021) 162 [arXiv:2108.05362] [INSPIRE].
V. V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [INSPIRE].
D. R. Yennie, S. C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].
J. C. Collins, D. E. Soper and G. F. Sterman, Transverse Momentum Distribution in Drell-Yan Pair and W and Z Boson Production, Nucl. Phys. B 250 (1985) 199 [INSPIRE].
J. C. Collins, D. E. Soper and G. F. Sterman, Factorization for Short Distance Hadron-Hadron Scattering, Nucl. Phys. B 261 (1985) 104 [INSPIRE].
G. F. Sterman, Summation of Large Corrections to Short Distance Hadronic Cross-Sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].
S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].
J. C. Collins, D. E. Soper and G. F. Sterman, Factorization of Hard Processes in QCD, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1 [hep-ph/0409313] [INSPIRE].
H. Contopanagos, E. Laenen and G. F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].
J. Collins, Foundations of perturbative QCD, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011) 1 [INSPIRE].
P. Ciafaloni and D. Comelli, Sudakov enhancement of electroweak corrections, Phys. Lett. B 446 (1999) 278 [hep-ph/9809321] [INSPIRE].
P. Ciafaloni and D. Comelli, Electroweak Sudakov form-factors and nonfactorizable soft QED effects at NLC energies, Phys. Lett. B 476 (2000) 49 [hep-ph/9910278] [INSPIRE].
M. Ciafaloni, P. Ciafaloni and D. Comelli, Bloch-Nordsieck violating electroweak corrections to inclusive TeV scale hard processes, Phys. Rev. Lett. 84 (2000) 4810 [hep-ph/0001142] [INSPIRE].
M. Ciafaloni, P. Ciafaloni and D. Comelli, Electroweak Bloch-Nordsieck violation at the TeV scale: ‘Strong’ weak interactions?, Nucl. Phys. B 589 (2000) 359 [hep-ph/0004071] [INSPIRE].
G. Bell, J. H. Kühn and J. Rittinger, Electroweak Sudakov Logarithms and Real Gauge-Boson Radiation in the TeV Region, Eur. Phys. J. C 70 (2010) 659 [arXiv:1004.4117] [INSPIRE].
A. Manohar, B. Shotwell, C. Bauer and S. Turczyk, Non-cancellation of electroweak logarithms in high-energy scattering, Phys. Lett. B 740 (2015) 179 [arXiv:1409.1918] [INSPIRE].
S. Catani, D. de Florian and G. Rodrigo, Space-like (versus time-like) collinear limits in QCD: Is factorization violated?, JHEP 07 (2012) 026 [arXiv:1112.4405] [INSPIRE].
J. R. Forshaw, M. H. Seymour and A. Siodmok, On the Breaking of Collinear Factorization in QCD, JHEP 11 (2012) 066 [arXiv:1206.6363] [INSPIRE].
P. Borel, R. Franceschini, R. Rattazzi and A. Wulzer, Probing the Scattering of Equivalent Electroweak Bosons, JHEP 06 (2012) 122 [arXiv:1202.1904] [INSPIRE].
G. Cuomo, L. Vecchi and A. Wulzer, Goldstone Equivalence and High Energy Electroweak Physics, SciPost Phys. 8 (2020) 078 [arXiv:1911.12366] [INSPIRE].
B. W. Lee, C. Quigg and H. B. Thacker, The Strength of Weak Interactions at Very High-Energies and the Higgs Boson Mass, Phys. Rev. Lett. 38 (1977) 883 [INSPIRE].
B. W. Lee, C. Quigg and H. B. Thacker, Weak Interactions at Very High-Energies: The Role of the Higgs Boson Mass, Phys. Rev. D 16 (1977) 1519 [INSPIRE].
E. Accomando, A. Ballestrero, A. Belhouari and E. Maina, Isolating Vector Boson Scattering at the LHC: Gauge cancellations and the Equivalent Vector Boson Approximation vs complete calculations, Phys. Rev. D 74 (2006) 073010 [hep-ph/0608019] [INSPIRE].
F. Maltoni, G. Ridolfi and M. Ubiali, b-initiated processes at the LHC: a reappraisal, JHEP 07 (2012) 022 [Erratum ibid. 04 (2013) 095] [arXiv:1203.6393] [INSPIRE].
D. Buarque Franzosi, O. Mattelaer, R. Ruiz and S. Shil, Automated predictions from polarized matrix elements, JHEP 04 (2020) 082 [arXiv:1912.01725] [INSPIRE].
J. Chen, Electroweak Splitting Functions and High Energy Showering, Ph.D. Thesis, University of Pittsburgh, Pittsburgh, PA, U.S.A. (2017).
J. Chen, On the Feynman Rules of Massive Gauge Theory in Physical Gauges, arXiv:1902.06738 [INSPIRE].
M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory, Addison-Wesley, Reading, PA, U.S.A. (1995).
D. Pagani and M. Zaro, One-loop electroweak Sudakov logarithms: a revisitation and automation, JHEP 02 (2022) 161 [arXiv:2110.03714] [INSPIRE].
C. W. Bauer, N. Ferland and B. R. Webber, Standard Model Parton Distributions at Very High Energies, JHEP 08 (2017) 036 [arXiv:1703.08562] [INSPIRE].
B. Fornal, A. V. Manohar and W. J. Waalewijn, Electroweak Gauge Boson Parton Distribution Functions, JHEP 05 (2018) 106 [arXiv:1803.06347] [INSPIRE].
C. W. Bauer, D. Provasoli and B. R. Webber, Standard Model Fragmentation Functions at Very High Energies, JHEP 11 (2018) 030 [arXiv:1806.10157] [INSPIRE].
C. W. Bauer and B. R. Webber, Polarization Effects in Standard Model Parton Distributions at Very High Energies, JHEP 03 (2019) 013 [arXiv:1808.08831] [INSPIRE].
V. D. Barger and R. J. N. Phillips, Collider physics, Addison-Wesley, Reading, PA, U.S.A. (1987) [INSPIRE].
I. Kuss, Improved effective vector boson approximation for hadron hadron collisions, Phys. Rev. D 55 (1997) 7165 [hep-ph/9608453] [INSPIRE].
W. Bernreuther and L. Chen, Improved effective vector boson approximation revisited, Phys. Rev. D 93 (2016) 053018 [arXiv:1511.07706] [INSPIRE].
I. Kuss and H. Spiesberger, Luminosities for vector boson-vector boson scattering at high-energy colliders, Phys. Rev. D 53 (1996) 6078 [hep-ph/9507204] [INSPIRE].
T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].
T. Becher, A. Broggio and A. Ferroglia, Introduction to Soft-Collinear Effective Theory, Lect. Notes Phys. 896 (2015) 1 [arXiv:1410.1892] [INSPIRE].
M. Greco, T. Han and Z. Liu, ISR effects for resonant Higgs production at future lepton colliders, Phys. Lett. B 763 (2016) 409 [arXiv:1607.03210] [INSPIRE].
V. Bertone, M. Cacciari, S. Frixione and G. Stagnitto, The partonic structure of the electron at the next-to-leading logarithmic accuracy in QED, JHEP 03 (2020) 135 [arXiv:1911.12040] [INSPIRE].
S. Frixione, Initial conditions for electron and photon structure and fragmentation functions, JHEP 11 (2019) 158 [arXiv:1909.03886] [INSPIRE].
S. Frixione, On factorisation schemes for the electron parton distribution functions in QED, JHEP 07 (2021) 180 [Erratum ibid. 12 (2012) 196] [arXiv:2105.06688] [INSPIRE].
S. Frixione, O. Mattelaer, M. Zaro and X. Zhao, Lepton collisions in MadGraph5_aMC@NLO, arXiv:2108.10261 [INSPIRE].
T. Stelzer and W. F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: Automatic Libraries Of Helicity Amplitudes for Feynman Diagram Computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].
F. Maltoni and T. Stelzer, MadEvent: Automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].
H. Murayama, I. Watanabe and K. Hagiwara, HELAS: HELicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11 (1992) [INSPIRE].
F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color Flow Decomposition of QCD Amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
E. Conte, B. Fuks and G. Serret, MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].
E. Conte and B. Fuks, Confronting new physics theories to LHC data with MADANALYSIS 5, Int. J. Mod. Phys. A 33 (2018) 1830027 [arXiv:1808.00480] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
F. Maltoni, T. McElmurry, R. Putman and S. Willenbrock, Choosing the Factorization Scale in Perturbative QCD, hep-ph/0703156 [INSPIRE].
C. Degrande, O. Mattelaer, R. Ruiz and J. Turner, Fully-Automated Precision Predictions for Heavy Neutrino Production Mechanisms at Hadron Colliders, Phys. Rev. D 94 (2016) 053002 [arXiv:1602.06957] [INSPIRE].
C. W. Bauer and N. Ferland, Resummation of electroweak Sudakov logarithms for real radiation, JHEP 09 (2016) 025 [arXiv:1601.07190] [INSPIRE].
C. W. Bauer, N. Ferland and B. R. Webber, Combining initial-state resummation with fixed-order calculations of electroweak corrections, JHEP 04 (2018) 125 [arXiv:1712.07147] [INSPIRE].
A. V. Manohar and W. J. Waalewijn, Electroweak Logarithms in Inclusive Cross Sections, JHEP 08 (2018) 137 [arXiv:1802.08687] [INSPIRE].
H. Georgi and H. D. Politzer, Freedom at Moderate Energies: Masses in Color Dynamics, Phys. Rev. D 14 (1976) 1829 [INSPIRE].
H. Georgi and H. D. Politzer, Precocious Scaling, Rescaling and xi Scaling, Phys. Rev. Lett. 36 (1976) 1281 [Erratum ibid. 37 (1976) 68] [INSPIRE].
A. De Rujula, H. Georgi and H. D. Politzer, Demythification of Electroproduction, Local Duality and Precocious Scaling, Annals Phys. 103 (1977) 315 [INSPIRE].
P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].
J. Alwall, C. Duhr, B. Fuks, O. Mattelaer, D. G. Öztürk and C.-H. Shen, Computing decay rates for new physics theories with FeynRules and MadGraph 5_aMC@NLO, Comput. Phys. Commun. 197 (2015) 312 [arXiv:1402.1178] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
S. Frixione, M. L. Mangano, P. Nason and G. Ridolfi, Improving the Weizsacker-Williams approximation in electron-proton collisions, Phys. Lett. B 319 (1993) 339 [hep-ph/9310350] [INSPIRE].
D. Alva, T. Han and R. Ruiz, Heavy Majorana neutrinos from W γ fusion at hadron colliders, JHEP 02 (2015) 072 [arXiv:1411.7305] [INSPIRE].
V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, The Two photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation, Phys. Rept. 15 (1975) 181 [INSPIRE].
A. Kalogeropoulos and J. Alwall, The SysCalc code: A tool to derive theoretical systematic uncertainties, arXiv:1801.08401 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2111.02442
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Ruiz, R., Costantini, A., Maltoni, F. et al. The Effective Vector Boson Approximation in high-energy muon collisions. J. High Energ. Phys. 2022, 114 (2022). https://doi.org/10.1007/JHEP06(2022)114
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2022)114