Abstract
We present a dynamical study of the double parton distribution in impact parameter space, which enters into the double scattering cross section in hadronic collisions. This distribution is analogous to the generalized parton densities in momentum space. We use the Lund Dipole Cascade model, presented in earlier articles, which is based on BFKL evolution including essential higher order corrections and saturation effects. As result we find large correlation effects, which break the factorization of the double scattering process. At small transverse separation we see the development of “hot spots”, which become stronger with increasing Q 2. At smaller x-values the distribution widens, consistent with the shrinking of the diffractive peak in elastic scattering. The dependence on Q 2 is, however, significantly stronger than the dependence on x, which has implications for extrapolations to LHC, e.g. for results for underlying events associated with the production of new heavy particles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Axial Field Spectrometer collaboration, T. Åkesson et al., Double parton scattering in pp collisions at \( \sqrt {s} = 63 \) GeV, Z. Phys. C 34 (1987) 163 [SPIRES].
CDF collaboration, F. Abe et al., Study of four jet events and evidence for double parton interactions in \( p\overline p \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. D 47 (1993) 4857 [SPIRES].
CDF collaboration, F. Abe et al., Double parton scattering in \( \overline p p \), collisions at \( \sqrt {s} = 1.8 \) TeV Phys. Rev. D 56 (1997) 3811 [SPIRES].
D0 collaboration, V.M. Abazov et al., Multiple jet production at low transverse energies in \( p\overline p \) collisions at \( \sqrt {s} = 1.8 \) TeV, Phys. Rev. D 67 (2003) 052001 [hep-ex/0207046] [SPIRES].
D0 collaboration, V.M. Abazov et al., Double parton interactions in photon+3jet events in \( p\overline p \) collisions \( \sqrt {s} = 1.96 \) TeV, Phys. Rev. D 81 (2010) 052012 [arXiv:0912.5104] [SPIRES].
J. Kuti and V.F. Weisskopf, Inelastic lepton-nucleon scattering and lepton pair production in the relativistic quark parton model, Phys. Rev. D4 (1971) 3418 [SPIRES].
V.P. Shelest, A.M. Snigirev and G.M. Zinovev, The multiparton distribution equations in QCD, Phys. Lett. B 113 (1982) 325 [SPIRES].
T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].
T.T. Chou and C.N. Yang, Geometrical model of multiparticle production in hadron-hadron collisions, Phys. Rev. D 32 (1985) 1692 [SPIRES].
A.M. Snigirev, Double parton distributions in the leading logarithm approximation of perturbative QCD, Phys. Rev. D 68 (2003) 114012 [hep-ph/0304172] [SPIRES].
J.R. Gaunt and W.J. Stirling, Double parton distributions incorporating perturbative QCD evolution and momentum and quark number sum rules, JHEP 03 (2010) 005 [arXiv:0910.4347] [SPIRES].
M. Diehl and A. Schafer, Theoretical considerations on multiparton interactions in QCD, Phys. Lett. B 698 (2011) 389 [arXiv:1102.3081] [SPIRES].
J.R. Gaunt and W.J. Stirling, Double parton scattering singularity in one-loop integrals, arXiv:1103.1888 [SPIRES].
T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].
T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].
R. Corke and T. Sjöstrand, Multiparton interactions with an x-dependent proton size, JHEP 05 (2011) 009 [arXiv:1101.5953] [SPIRES].
M. Bähr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERW IG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [SPIRES].
M. Bähr, J.M. Butterworth, S. Gieseke and M.H. Seymour, Soft interactions in HERW IG++, arXiv:0905.4671 [SPIRES].
M. Bähr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].
E.A. Kuraev, L.N. Lipatov and V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories, Sov. Phys. JETP 45 (1977) 199 [SPIRES].
I.I. Balitsky and L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics, Sov. J. Nucl. Phys. 28 (1978) 822 [SPIRES].
E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [SPIRES].
E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].
E. Avsar, G. Gustafson and L. Lönnblad, Diifractive excitation in DIS and pp collisions, JHEP 12 (2007) 012 [arXiv:0709.1368] [SPIRES].
C. Flensburg, G. Gustafson and L. Lönnblad, Elastic and quasi-elastic pp and γ ∗ p scattering in the dipole model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [SPIRES].
C. Flensburg and G. Gustafson, Fluctuations, saturation and diffractive excitation in high energy collisions, JHEP 10 (2010) 014 [arXiv:1004.5502] [SPIRES].
A.H. Mueller, Soft gluons in the infinite momentum wave function and the BFKL Pomeron, Nucl. Phys. B 415 (1994) 373 [SPIRES].
A.H. Mueller and B. Patel, Single and double BFKL Pomeron exchange and a dipole picture of high-energy hard processes, Nucl. Phys. B 425 (1994) 471 [hep-ph/9403256] [SPIRES].
A.H. Mueller, Unitarity and the BFKL Pomeron, Nucl. Phys. B 437 (1995) 107 [hep-ph/9408245] [SPIRES].
B. Blok, Y. Dokshitzer, L. Frankfurt and M. Strikman, The four jet production at LHC and Tevatron in QCD, Phys. Rev. D 83 (2011) 071501 [arXiv:1009.2714] [SPIRES].
G.P. Salam, An introduction to leading and next-to-leading BFKL, Acta Phys. Polon. B 30 (1999) 3679 [hep-ph/9910492] [SPIRES].
I. Balitsky and G.A. Chirilli, NLO evolution of color dipole, Acta Phys. Polon. B 39 (2008) 2561 [SPIRES].
A.H. Mueller and G.P. Salam, Large multiplicity fluctuations and saturation effects in onium collisions, Nucl. Phys. B 475 (1996) 293 [hep-ph/9605302] [SPIRES].
J. Kwiecinski, A.D. Martin and P.J. Sutton, Constraints on gluon evolution at small x, Z. Phys. C 71 (1996) 585 [hep-ph/9602320] [SPIRES].
E. Iancu, A. Leonidov and L. McLerran, T he colour glass condensate: an introduction, hep-ph/0202270 [SPIRES].
E. Iancu and R. Venugopalan, The color glass condensate and high energy scattering in QCD, in Quark Gluon Plasma 3, R.C. Hwa and X.N. Wang eds., World Scientific (2004) [hep-ph/0303204] [SPIRES].
F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The color glass condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [SPIRES].
E. Iancu, A. Leonidov and L.D. McLerran, Nonlinear gluon evolution in the color glass condensate. I, Nucl. Phys. A 692 (2001) 583 [hep-ph/0011241] [SPIRES].
J. Jalilian-Marian, A. Kovner, A. Leonidov and H. Weigert, The BFKL equation from the Wilson renormalization group, Nucl. Phys. B 504 (1997) 415 [hep-ph/9701284] [SPIRES].
E. Avsar, On the high energy behaviour of the total cross section in the QCD dipole model, JHEP 04 (2008) 033 [arXiv:0803.0446] [SPIRES].
C. Flensburg, G. Gustafson and L. Lönnblad, Inclusive and exclusive observables from dipoles in high energy collisions, arXiv:1103.4321 [SPIRES].
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint:1103.4320
Work supported in parts by the EU Marie Curie RTN MCnet (MRTN-CT-2006-035606), and the Swedish research council (contracts 621-2008-4252 and 621-2009-4076).
Rights and permissions
Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Flensburg, C., Gustafson, G., Lönnblad, L. et al. Correlations in double parton distributions at small x . J. High Energ. Phys. 2011, 66 (2011). https://doi.org/10.1007/JHEP06(2011)066
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2011)066