Abstract
We describe the calculation of the next-to-next-to-leading order (NNLO) QCD corrections to isolated photon and photon-plus-jet production, and discuss how the experimental hadron-level photon definition and isolation criteria can be approximated in the theoretical parton-level calculation. The NNLO corrections lead to a considerable reduction of the theory uncertainty on the predictions, typically to less than five per cent, and enable an improved description of experimental measurements from ATLAS and CMS.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Athens-Athens-Brookhaven-CERN collaboration, Direct production of high pT single photons at the CERN intersecting storage rings, Phys. Lett. B 87 (1979) 292.
E. Anassontzis et al., High pT direct photon production in pp collisions, Z. Phys. C 13 (1982) 277 [INSPIRE].
CMOR collaboration, Direct photon production at the CERN ISR, Nucl. Phys. B 327 (1989) 541 [INSPIRE].
UA1 collaboration, Direct photon production at the CERN proton-anti-proton collider, Phys. Lett. B 209 (1988) 385 [INSPIRE].
UA2 collaboration, A measurement of the direct photon production cross-section at the CERN \( \overline{p}p \) collider, Phys. Lett. B 263 (1991) 544 [INSPIRE].
CDF collaboration, Measurement of the inclusive-isolated prompt-photon cross section in \( p\overline{p} \) collisions using the full CDF data set, Phys. Rev. D 96 (2017) 092003 [arXiv:1703.00599] [INSPIRE].
D0 collaboration, Measurement of the isolated photon cross section in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 639 (2006) 151 [Erratum ibid. B 658 (2008) 285] [hep-ex/0511054] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross-section in pp collisions at \( \sqrt{s} \) = 7 TeV using 35 pb−1 of ATLAS data, Phys. Lett. B 706 (2011) 150 [arXiv:1108.0253] [INSPIRE].
ATLAS collaboration, Measurement of the inclusive isolated prompt photon cross section in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, JHEP 08 (2016) 005 [arXiv:1605.03495] [INSPIRE].
ATLAS collaboration, Measurement of the cross section for inclusive isolated-photon production in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Lett. B 770 (2017) 473 [arXiv:1701.06882] [INSPIRE].
CMS collaboration, Measurement of the differential cross section for isolated prompt photon production in pp collisions at 7 TeV, Phys. Rev. D 84 (2011) 052011 [arXiv:1108.2044] [INSPIRE].
CMS collaboration, Measurement of differential cross sections for inclusive isolated-photon and photon+jets production in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Eur. Phys. J. C 79 (2019) 20 [arXiv:1807.00782] [INSPIRE].
D0 collaboration, Measurement of the differential cross-section for the production of an isolated photon with associated jet in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Lett. B 666 (2008) 435 [arXiv:0804.1107] [INSPIRE].
D0 collaboration, Measurement of the differential cross section of photon plus jet production in \( p\overline{p} \) collisions at \( \sqrt{s} \) = 1.96 TeV, Phys. Rev. D 88 (2013) 072008 [arXiv:1308.2708] [INSPIRE].
ATLAS collaboration, Dynamics of isolated-photon plus jet production in pp collisions at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Nucl. Phys. B 875 (2013) 483 [arXiv:1307.6795] [INSPIRE].
ATLAS collaboration, High-ET isolated-photon plus jets production in pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Nucl. Phys. B 918 (2017) 257 [arXiv:1611.06586] [INSPIRE].
ATLAS collaboration, Measurement of the cross section for isolated-photon plus jet production in pp collisions at \( \sqrt{s} \) = 13 TeV using the ATLAS detector, Phys. Lett. B 780 (2018) 578 [arXiv:1801.00112] [INSPIRE].
CMS collaboration, Rapidity distributions in exclusive Z + jet and γ + jet events in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Rev. D 88 (2013) 112009 [arXiv:1310.3082] [INSPIRE].
CMS collaboration, Measurement of the triple-differential cross section for photon + jets production in proton-proton collisions at \( \sqrt{s} \) = 7 TeV, JHEP 06 (2014) 009 [arXiv:1311.6141] [INSPIRE].
CMS collaboration, Comparison of the Z/γ∗ + jets to γ + jets cross sections in pp collisions at \( \sqrt{s} \) = 8 TeV, JHEP 10 (2015) 128 [Erratum ibid. 1604 (2016) 010] [arXiv:1505.06520] [INSPIRE].
F. Halzen and D.M. Scott, Testing QCD in the hadroproduction of real and virtual photons, Phys. Rev. Lett. 40 (1978) 1117 [INSPIRE].
R. Rückl, S.J. Brodsky and J.F. Gunion, The production of real photons at large transverse momentum in pp collisions, Phys. Rev. D 18 (1978) 2469 [INSPIRE].
P.N. Harriman, A.D. Martin, W.J. Stirling and R.G. Roberts, Parton distributions extracted from data on deep inelastic lepton scattering, prompt photon production and the Drell-Yan process, Phys. Rev. D 42 (1990) 798 [INSPIRE].
W. Vogelsang and A. Vogt, Constraints on the proton’s gluon distribution from prompt photon production, Nucl. Phys. B 453 (1995) 334 [hep-ph/9505404] [INSPIRE].
D. d’Enterria and J. Rojo, Quantitative constraints on the gluon distribution function in the proton from collider isolated-photon data, Nucl. Phys. B 860 (2012) 311 [arXiv:1202.1762] [INSPIRE].
L. Carminati et al., Sensitivity of the LHC isolated-gamma+jet data to the parton distribution functions of the proton, EPL 101 (2013) 61002 [arXiv:1212.5511] [INSPIRE].
J.M. Campbell, J. Rojo, E. Slade and C. Williams, Direct photon production and PDF fits reloaded, Eur. Phys. J. C 78 (2018) 470 [arXiv:1802.03021] [INSPIRE].
K. Koller, T.F. Walsh and P.M. Zerwas, Testing QCD: direct photons in e+ e− collisions, Z. Phys. C 2 (1979) 197 [INSPIRE].
E. Laermann, T.F. Walsh, I. Schmitt and P.M. Zerwas, Direct Photons in e+ e− annihilation, Nucl. Phys. B 207 (1982) 205 [INSPIRE].
S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
P. Aurenche, R. Baier, M. Fontannaz and D. Schiff, Prompt photon production at large pt scheme invariant QCD predictions and comparison with experiment, Nucl. Phys. B 297 (1988) 661 [INSPIRE].
H. Baer, J. Ohnemus and J.F. Owens, A next-to-leading logarithm calculation of direct photon production, Phys. Rev. D 42 (1990) 61 [INSPIRE].
P. Aurenche et al., Next-to-leading order bremsstrahlung contribution to prompt photon production, Nucl. Phys. B 399 (1993) 34 [INSPIRE].
L.E. Gordon and W. Vogelsang, Polarized and unpolarized prompt photon production beyond the leading order, Phys. Rev. D 48 (1993) 3136 [INSPIRE].
M. Gluck, L.E. Gordon, E. Reya and W. Vogelsang, High P (T ) photon production at \( p\overline{p} \) collider, Phys. Rev. Lett. 73 (1994) 388 [INSPIRE].
S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].
P. Aurenche et al., A new critical study of photon production in hadronic collisions, Phys. Rev. D 73 (2006) 094007 [hep-ph/0602133] [INSPIRE].
J.M. Campbell, R.K. Ellis and C. Williams, Direct photon production at next-to–next-to-leading order, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].
J.M. Campbell, R.K. Ellis and C. Williams, Driving missing data at the LHC: NNLO predictions for the ratio of γ + j and Z + j, Phys. Rev. D 96 (2017) 014037 [arXiv:1703.10109] [INSPIRE].
S. Catani et al., Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [Erratum ibid. 117 (2016) 089901] [arXiv:1110.2375] [INSPIRE].
J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].
M. Balsiger, T. Becher and D.Y. Shao, Non-global logarithms in jet and isolation cone cross sections, JHEP 08 (2018) 104 [arXiv:1803.07045] [INSPIRE].
J.R. Andersen et al., Les Houches 2013: physics at TeV colliders: standard model working group report, arXiv:1405.1067 [INSPIRE].
J.R. Andersen et al., Les Houches 2015: physics at TeV colliders standard model working group report, in the proceedings of the 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015), June 1–19, Les Houches, France (2016), arXiv:1605.04692 [INSPIRE].
S. Amoroso et al., Les Houches 2019: physics at TeV colliders: standard model working group report, in 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les Houches (PhysTeV 2019) Les Houches, France, June 10-28, 2019, 2020, arXiv:2003.01700 [INSPIRE].
S. Catani et al., Diphoton production at the LHC: a QCD study up to NNLO, JHEP 04 (2018) 142 [arXiv:1802.02095] [INSPIRE].
S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Isolating prompt photons with narrow cones, JHEP 09 (2013) 007 [arXiv:1306.6498] [INSPIRE].
F. Siegert, A practical guide to event generation for prompt photon production with Sherpa, J. Phys. G 44 (2017) 044007 [arXiv:1611.07226] [INSPIRE].
T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].
S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].
OPAL collaboration, Measurement of the quark to photon fragmentation function through the inclusive production of prompt photons in hadronic Z 0 decays, Eur. Phys. J. C 2 (1998) 39 [hep-ex/9708020] [INSPIRE].
ALEPH collaboration, First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [INSPIRE].
E.W.N. Glover and A.G. Morgan, Measuring the photon fragmentation function at LEP, Z. Phys. C 62 (1994) 311 [INSPIRE].
A. Gehrmann-De Ridder and E.W.N. Glover, A complete O(ααs) calculation of the photon + 1 jet rate in e+ e− annihilation, Nucl. Phys. B 517 (1998) 269 [hep-ph/9707224] [INSPIRE].
J.F. Owens, Large momentum transfer production of direct photons, jets and particles, Rev. Mod. Phys. 59 (1987) 465 [INSPIRE].
M. Glück, E. Reya and A. Vogt, Parton fragmentation into photons beyond the leading order, Phys. Rev. D 48 (1993) 116 [Erratum ibid. D 51 (1995) 1427] [INSPIRE].
L. Bourhis, M. Fontannaz and J.P. Guillet, Quarks and gluon fragmentation functions into photons, Eur. Phys. J. C 2 (1998) 529 [hep-ph/9704447] [INSPIRE].
A. Gehrmann-De Ridder and E.W.N. Glover, Final state photon production at LEP, Eur. Phys. J. C 7 (1999) 29 [hep-ph/9806316] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
NNPDF collaboration, Parton distributions from high-precision collider data, Eur. Phys. J. C 77 (2017) 663 [arXiv:1706.00428] [INSPIRE].
C. Anastasiou, E.W.N. Glover, C. Oleari and M.E. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys. B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].
Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP 06 (2003) 028 [Erratum ibid. 04 (2014) 112] [hep-ph/0304168] [INSPIRE].
A. Signer, One loop corrections to five parton amplitudes with external photons, Phys. Lett. B 357 (1995) 204 [hep-ph/9507442] [INSPIRE].
A. Signer, Helicity method for next-to-leading order corrections in QCD, Ph.D. thesis, ETH Zürich, Switzerland (1995).
V. Del Duca, W.B. Kilgore and F. Maltoni, Multiphoton amplitudes for next-to-leading order QCD, Nucl. Phys. B 566 (2000) 252 [hep-ph/9910253] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].
A. Daleo, T. Gehrmann and D. Maˆıtre, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].
J. Currie, E.W.N. Glover and S. Wells, Infrared structure at NNLO using antenna subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Quark-gluon antenna functions from neutralino decay, Phys. Lett. B 612 (2005) 36 [hep-ph/0501291] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Gluon-gluon antenna functions from Higgs boson decay, Phys. Lett. B 612 (2005) 49 [hep-ph/0502110] [INSPIRE].
A. Daleo, A. Gehrmann-De Ridder, T. Gehrmann and G. Luisoni, Antenna subtraction at NNLO with hadronic initial states: initial-final configurations, JHEP 01 (2010) 118 [arXiv:0912.0374] [INSPIRE].
T. Gehrmann and P.F. Monni, Antenna subtraction at NNLO with hadronic initial states: real-virtual initial-initial configurations, JHEP 12 (2011) 049 [arXiv:1107.4037] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].
A. Gehrmann-De Ridder et al., Precise QCD predictions for the production of a Z boson in association with a hadronic jet, Phys. Rev. Lett. 117 (2016) 022001 [arXiv:1507.02850] [INSPIRE].
A. Gehrmann-De Ridder et al., The NNLO QCD corrections to Z boson production at large transverse momentum, JHEP 07 (2016) 133 [arXiv:1605.04295] [INSPIRE].
F. Cascioli, P. Maierhöfer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].
J.M. Lindert et al., Precise predictions for V + jets dark matter backgrounds, Eur. Phys. J. C 77 (2017) 829 [arXiv:1705.04664] [INSPIRE].
S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics, Phys. Rev. D 93 (2016) 033006 [arXiv:1506.07443] [INSPIRE].
A. Gehrmann-De Ridder et al., Vector boson production in association with a jet at forward rapidities, Eur. Phys. J. C 79 (2019) 526 [arXiv:1901.11041] [INSPIRE].
J.M. Campbell and C. Williams, private communication.
T. Becher and X. Garcia i Tormo, Electroweak Sudakov effects in W, Z and γ production at large transverse momentum, Phys. Rev. D 88 (2013) 013009 [arXiv:1305.4202] [INSPIRE].
T. Becher and X. Garcia i Tormo, Addendum: electroweak Sudakov effects in W , Z and γ production at large transverse momentum, Phys. Rev. D 92 (2015) 073011 [arXiv:1509.01961] [INSPIRE].
A. Gehrmann-De Ridder, T. Gehrmann and E. Poulsen, Measuring the photon fragmentation function at HERA, Eur. Phys. J. C 47 (2006) 395 [hep-ph/0604030] [INSPIRE].
T. Kaufmann, A. Mukherjee and W. Vogelsang, Access to photon fragmentation functions in hadronic jet production, Phys. Rev. D 93 (2016) 114021 [arXiv:1604.07175] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1904.01044
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chen, X., Gehrmann, T., Glover, N. et al. Isolated photon and photon+jet production at NNLO QCD accuracy. J high energy phys 2020, 166 (2020). https://doi.org/10.1007/JHEP04(2020)166
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP04(2020)166