Abstract
We study standard electroweak/Higgs processes at the high-energy lepton colliders ILC and CLIC. We identify a subset of three operators in the SMEFT that give leading contributions to these processes at high energies. We then perform a ‘high-energy fit’ including these operators. Our final bounds surpass existing LEP bounds and HL-LHC projections by orders of magnitude. Furthermore, we find that these colliders can probe scales up to tens of TeV, corresponding to the highest scales explored in electroweak/Higgs physics.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].
G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].
R.S. Gupta, Probing quartic neutral gauge boson couplings using diffractive photon fusion at the LHC, Phys. Rev. D 85 (2012) 014006 [arXiv:1111.3354] [INSPIRE].
R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].
S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, New Higgs interactions and recent data from the LHC and the Tevatron, JHEP 10 (2012) 062 [arXiv:1207.3588] [INSPIRE].
R.S. Gupta, M. Montull and F. Riva, SUSY faces its Higgs couplings, JHEP 04 (2013) 132 [arXiv:1212.5240] [INSPIRE].
S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].
R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure the Higgs boson mass and self-coupling?, Phys. Rev. D 88 (2013) 055024 [arXiv:1305.6397] [INSPIRE].
J. Elias-Miró, C. Grojean, R.S. Gupta and D. Marzocca, Scaling and tuning of EW and Higgs observables, JHEP 05 (2014) 019 [arXiv:1312.2928] [INSPIRE].
R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].
A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators, JHEP 02 (2015) 039 [arXiv:1411.0669] [INSPIRE].
C. Englert and M. Spannowsky, Effective theories and measurements at colliders, Phys. Lett. B 740 (2015) 8 [arXiv:1408.5147] [INSPIRE].
R.S. Gupta, A. Pomarol and F. Riva, BSM primary effects, Phys. Rev. D 91 (2015) 035001 [arXiv:1405.0181] [INSPIRE].
G. Amar et al., Exploration of the tensor structure of the Higgs boson coupling to weak bosons in e+e− collisions, JHEP 02 (2015) 128 [arXiv:1405.3957] [INSPIRE].
M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].
N. Craig, M. Farina, M. McCullough and M. Perelstein, Precision higgsstrahlung as a probe of new physics, JHEP 03 (2015) 146 [arXiv:1411.0676] [INSPIRE].
J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].
J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].
S. Banerjee, T. Mandal, B. Mellado and B. Mukhopadhyaya, Cornering dimension-6 HVV interactions at high luminosity LHC: the role of event ratios, JHEP 09 (2015) 057 [arXiv:1505.00226] [INSPIRE].
C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].
D. Ghosh, R.S. Gupta and G. Perez, Is the Higgs mechanism of fermion mass generation a fact? A Yukawa-less first-two-generation model, Phys. Lett. B 755 (2016) 504 [arXiv:1508.01501] [INSPIRE].
C. Degrande, B. Fuks, K. Mawatari, K. Mimasu and V. Sanz, Electroweak Higgs boson production in the Standard Model effective field theory beyond leading order in QCD, Eur. Phys. J. C 77 (2017) 262 [arXiv:1609.04833] [INSPIRE].
J. Cohen, S. Bar-Shalom and G. Eilam, Contact interactions in Higgs-vector boson associated production at the ILC, Phys. Rev. D 94 (2016) 035030 [arXiv:1602.01698] [INSPIRE].
S.-F. Ge, H.-J. He and R.-Q. Xiao, Probing new physics scales from Higgs and electroweak observables at e+e− Higgs factory, JHEP 10 (2016) 007 [arXiv:1603.03385] [INSPIRE].
R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the validity of the effective field theory approach to SM precision tests, JHEP 07 (2016) 144 [arXiv:1604.06444] [INSPIRE].
A. Biekötter, J. Brehmer and T. Plehn, Extending the limits of Higgs effective theory, Phys. Rev. D 94 (2016) 055032 [arXiv:1602.05202] [INSPIRE].
J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509] [INSPIRE].
H. Denizli and A. Senol, Constraints on Higgs effective couplings in Hν\( \overline{\nu} \) production of CLIC at 380 GeV, Adv. High Energy Phys. 2018 (2018) 1627051 [arXiv:1707.03890] [INSPIRE].
T. Barklow et al., Improved formalism for precision Higgs coupling fits, Phys. Rev. D 97 (2018) 053003 [arXiv:1708.08912] [INSPIRE].
I. Brivio and M. Trott, The Standard Model as an effective field theory, Phys. Rept. 793 (2019) 1 [arXiv:1706.08945] [INSPIRE].
T. Barklow, K. Fujii, S. Jung, M.E. Peskin and J. Tian, Model-independent determination of the triple Higgs coupling at e+e− colliders, Phys. Rev. D 97 (2018) 053004 [arXiv:1708.09079] [INSPIRE].
H. Khanpour and M. Mohammadi Najafabadi, Constraining Higgs boson effective couplings at electron-positron colliders, Phys. Rev. D 95 (2017) 055026 [arXiv:1702.00951] [INSPIRE].
C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs characterisation in the presence of theoretical uncertainties and invisible decays, Eur. Phys. J. C 77 (2017) 789 [arXiv:1708.06355] [INSPIRE].
G. Panico, F. Riva and A. Wulzer, Diboson interference resurrection, Phys. Lett. B 776 (2018) 473 [arXiv:1708.07823] [INSPIRE].
R. Franceschini, G. Panico, A. Pomarol, F. Riva and A. Wulzer, Electroweak precision tests in high-energy diboson processes, JHEP 02 (2018) 111 [arXiv:1712.01310] [INSPIRE].
S. Banerjee, C. Englert, R.S. Gupta and M. Spannowsky, Probing electroweak precision physics via boosted Higgs-strahlung at the LHC, Phys. Rev. D 98 (2018) 095012 [arXiv:1807.01796] [INSPIRE].
C. Grojean, M. Montull and M. Riembau, Diboson at the LHC vs LEP, JHEP 03 (2019) 020 [arXiv:1810.05149] [INSPIRE].
A. Biekoetter, T. Corbett and T. Plehn, The gauge-Higgs legacy of the LHC run II, SciPost Phys. 6 (2019) 064 [arXiv:1812.07587] [INSPIRE].
D. Goncalves and J. Nakamura, Boosting the H → invisibles searches with Z boson polarization, Phys. Rev. D 99 (2019) 055021 [arXiv:1809.07327] [INSPIRE].
R. Gomez-Ambrosio, Studies of dimension-six EFT effects in vector boson scattering, Eur. Phys. J. C 79 (2019) 389 [arXiv:1809.04189] [INSPIRE].
F.F. Freitas, C.K. Khosa and V. Sanz, Exploring the Standard Model EFT in VH production with machine learning, Phys. Rev. D 100 (2019) 035040 [arXiv:1902.05803] [INSPIRE].
S. Banerjee, R.S. Gupta, J.Y. Reiness and M. Spannowsky, Resolving the tensor structure of the Higgs coupling to Z-bosons via Higgs-strahlung, Phys. Rev. D 100 (2019) 115004 [arXiv:1905.02728] [INSPIRE].
S. Banerjee, R.S. Gupta, J.Y. Reiness, S. Seth and M. Spannowsky, Towards the ultimate differential SMEFT analysis, JHEP 09 (2020) 170 [arXiv:1912.07628] [INSPIRE].
A. Biekötter, R. Gomez-Ambrosio, P. Gregg, F. Krauss and M. Schönherr, Constraining SMEFT operators with associated hγ production in weak boson fusion, Phys. Lett. B 814 (2021) 136079 [arXiv:2003.06379] [INSPIRE].
J.Y. Araz, S. Banerjee, R.S. Gupta and M. Spannowsky, Precision SMEFT bounds from the VBF Higgs at high transverse momentum, JHEP 04 (2021) 125 [arXiv:2011.03555] [INSPIRE].
J. Ellis, M. Madigan, K. Mimasu, V. Sanz and T. You, Top, Higgs, diboson and electroweak fit to the Standard Model effective field theory, JHEP 04 (2021) 279 [arXiv:2012.02779] [INSPIRE].
S. Banerjee, R.S. Gupta, O. Ochoa-Valeriano, M. Spannowsky and E. Venturini, A fully differential SMEFT analysis of the golden channel using the method of moments, JHEP 06 (2021) 031 [arXiv:2012.11631] [INSPIRE].
E.d.S. Almeida, A. Alves, O.J.P. Éboli and M.C. Gonzalez-Garcia, Electroweak legacy of the LHC run II, Phys. Rev. D 105 (2022) 013006 [arXiv:2108.04828] [INSPIRE].
S. Chatterjee, N. Frohner, L. Lechner, R. Schöfbeck and D. Schwarz, Tree boosting for learning EFT parameters, arXiv:2107.10859 [INSPIRE].
J. de Blas et al., The CLIC potential for new physics, arXiv:1812.02093 [INSPIRE].
D. Buttazzo, D. Redigolo, F. Sala and A. Tesi, Fusing vectors into scalars at high energy lepton colliders, JHEP 11 (2018) 144 [arXiv:1807.04743] [INSPIRE].
D. Buttazzo, R. Franceschini and A. Wulzer, Two paths towards precision at a very high energy lepton collider, JHEP 05 (2021) 219 [arXiv:2012.11555] [INSPIRE].
M.S. Chanowitz and M.K. Gaillard, The TeV physics of strongly interacting W’s and Z’s, Nucl. Phys. B 261 (1985) 379 [INSPIRE].
A. Wulzer, An equivalent gauge and the equivalence theorem, Nucl. Phys. B 885 (2014) 97 [arXiv:1309.6055] [INSPIRE].
H. Yamamoto, Physics at International Linear Collider (ILC), J. Phys. Soc. Jap. 76 (2007) 111014 [arXiv:0709.0899] [INSPIRE].
H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider, Eur. Phys. J. C 77 (2017) 475 [arXiv:1608.07538] [INSPIRE].
CLICdp, ILD concept group collaboration, On the physics potential of ILC and CLIC, PoS CORFU2019 (2020) 037 [arXiv:2004.14628] [INSPIRE].
C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — the Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
T. Behnke et al. eds., The International Linear Collider technical design report — volume 1: executive summary, arXiv:1306.6327 [INSPIRE].
D.M. Asner et al., ILC Higgs white paper, in Community Summer study 2013: Snowmass on the Mississippi, (2013) [arXiv:1310.0763] [INSPIRE].
L. Linssen, A. Miyamoto, M. Stanitzki and H. Weerts, eds., Physics and detectors at CLIC: CLIC conceptual design report, CERN Yellow Repts., CERN, Geneva, Switzerland (2012) [arXiv:1202.5940] [INSPIRE].
J. de Blas et al., Higgs boson studies at future particle colliders, JHEP 01 (2020) 139 [arXiv:1905.03764] [INSPIRE].
G. Moortgat-Pick et al., The role of polarized positrons and electrons in revealing fundamental interactions at the linear collider, Phys. Rept. 460 (2008) 131 [hep-ph/0507011] [INSPIRE].
G. Durieux, C. Grojean, J. Gu and K. Wang, The leptonic future of the Higgs, JHEP 09 (2017) 014 [arXiv:1704.02333] [INSPIRE].
K. Fujii et al., The role of positron polarization for the inital 250 GeV stage of the International Linear Collider, arXiv:1801.02840 [INSPIRE].
Linear Collider collaboration, Polarised beams at future e+ e− colliders, PoS ICHEP2020 (2021) 691 [arXiv:2012.11267] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
H. Abramowicz et al., The International Linear Collider technical design report — volume 4: detectors, arXiv:1306.6329 [INSPIRE].
P. Demin and M. Selvaggi, Delphes Card ILD, https://github.com/delphes/delphes/blob/master/cards/delphes_card_ILD.tcl, accessed 1 June 2021.
CLICdp collaboration, A detector for CLIC: main parameters and performance, Tech. Rep. CLICdp-Note-2018-005, CERN, Geneva, Switzerland (2018) [arXiv:1812.07337] [INSPIRE].
E. Leogrande, P. Roloff, U. Schnoor and M. Weber, A DELPHES card for the CLIC detector, Tech. Rep. CLICdp-Note-2018-007, CERN, Geneva, Switzerland (2018) [arXiv:1909.12728] [INSPIRE].
LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
N. Craig, J. Gu, Z. Liu and K. Wang, Beyond Higgs couplings: probing the Higgs with angular observables at future e+e− colliders, JHEP 03 (2016) 050 [arXiv:1512.06877] [INSPIRE].
J. Yan et al., Measurement of the Higgs boson mass and e+e− → ZH cross section using Z → μ+μ− and Z → e+e− at the ILC, Phys. Rev. D 94 (2016) 113002 [Erratum ibid. 103 (2021) 099903] [arXiv:1604.07524] [INSPIRE].
J.F. Gunion, T. Han and R. Sobey, Measuring the coupling of a Higgs boson to ZZ at linear colliders, Phys. Lett. B 429 (1998) 79 [hep-ph/9801317] [INSPIRE].
T. Han and J. Jiang, CP violating ZZH coupling at e+e− linear colliders, Phys. Rev. D 63 (2001) 096007 [hep-ph/0011271] [INSPIRE].
T. Han, Z. Liu, Z. Qian and J. Sayre, Improving Higgs coupling measurements through ZZ fusion at the ILC, Phys. Rev. D 91 (2015) 113007 [arXiv:1504.01399] [INSPIRE].
ALEPH, DELPHI, L3, OPAL and LEP TGC Working Group collaborations, A combination of preliminary results on gauge boson couplings measured by the LEP experiments, Tech. Rep. LEPEWWG-TGC-2003-01, CERN, Geneva, Switzerland (2003).
R. Torre, L. Ricci and A. Wulzer, On the W&Y interpretation of high-energy Drell-Yan measurements, JHEP 02 (2021) 144 [arXiv:2008.12978] [INSPIRE].
G. Panico, L. Ricci and A. Wulzer, High-energy EFT probes with fully differential Drell-Yan measurements, JHEP 07 (2021) 086 [arXiv:2103.10532] [INSPIRE].
M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [INSPIRE].
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e+e− → W+W−, Nucl. Phys. B 282 (1987) 253 [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2109.14634
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Banerjee, S., Gupta, R.S., Ochoa-Valeriano, O. et al. High energy lepton colliders as the ultimate Higgs microscopes. J. High Energ. Phys. 2022, 176 (2022). https://doi.org/10.1007/JHEP02(2022)176
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2022)176