Abstract
The 100+ free parameters of the minimal supersymmetric standard model (MSSM) make it computationally difficult to compare systematically with data, motivating the study of specific parameter reductions such as the cMSSM and pMSSM. Here we instead study the reductions of parameter space implied by using minimal flavour violation (MFV) to organise the R-parity conserving MSSM, with a view towards systematically building in constraints on flavour-violating physics. Within this framework the space of parameters is reduced by expanding soft supersymmetry-breaking terms in powers of the Cabibbo angle, leading to a 24-, 30- or 42-parameter framework (which we call MSSM-24, MSSM-30, and MSSM-42 respectively), depending on the order kept in the expansion. We provide a Bayesian global fit to data of the MSSM-30 parameter set to show that this is manageable with current tools. We compare the MFV reductions to the 19-parameter pMSSM choice and show that the pMSSM is not contained as a subset. The MSSM-30 analysis favours a relatively lighter TeV-scale pseudoscalar Higgs boson and tan β ∼ 10 with multi-TeV sparticles.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Adams, The Hitchhiker’s guide to the galaxy, Del Rey Publishing, U.K. (1995).
S.P. Martin, A supersymmetry primer, Adv. Ser. Direct. High Energy Phys. 21 (2010) 1 [hep-ph/9709356] [INSPIRE].
D.J.H. Chung et al., The soft supersymmetry breaking lagrangian: theory and applications, Phys. Rept. 407 (2005) 1 [hep-ph/0312378] [INSPIRE].
P. Nath et al., The hunt for new physics at the Large Hadron Collider, Nucl. Phys. Proc. Suppl. 200-202 (2010) 185 [arXiv:1001.2693] [INSPIRE].
C.P. Burgess, J. Matias and F. Quevedo, MSLED: a minimal supersymmetric large extra dimensions scenario, Nucl. Phys. B 706 (2005) 71 [hep-ph/0404135] [INSPIRE].
G.F. Giudice and R. Rattazzi, Theories with gauge mediated supersymmetry breaking, Phys. Rept. 322 (1999) 419 [hep-ph/9801271] [INSPIRE].
L.E. Ibanez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press, Cambridge U.K. (2012).
LHC New Physics Working Group collaboration, D. Alves et al., Simplified models for LHC new physics searches, J. Phys. G 39 (2012) 105005 [arXiv:1105.2838] [INSPIRE].
R. Kitano and Y. Nomura, A solution to the supersymmetric fine-tuning problem within the MSSM, Phys. Lett. B 631 (2005) 58 [hep-ph/0509039] [INSPIRE].
R. Kitano and Y. Nomura, Supersymmetry, naturalness and signatures at the LHC, Phys. Rev. D 73 (2006) 095004 [hep-ph/0602096] [INSPIRE].
M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].
A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426 [hep-ph/0211331] [INSPIRE].
R.S. Chivukula and H. Georgi, Composite technicolor standard model, Phys. Lett. B 188 (1987) 99 [INSPIRE].
A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].
G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].
A.J. Buras, Minimal flavor violation, Acta Phys. Polon. B 34 (2003) 5615 [hep-ph/0310208] [INSPIRE].
L.J. Hall and L. Randall, Weak scale effective supersymmetry, Phys. Rev. Lett. 65 (1990) 2939 [INSPIRE].
M. Ciuchini, G. Degrassi, P. Gambino and G.F. Giudice, Next-to-leading QCD corrections to B → X s γ in supersymmetry, Nucl. Phys. B 534 (1998) 3 [hep-ph/9806308] [INSPIRE].
A. Ali and D. London, Profiles of the unitarity triangle and CP-violating phases in the standard model and supersymmetric theories, Eur. Phys. J. C 9 (1999) 687 [hep-ph/9903535] [INSPIRE].
A.J. Buras and R. Fleischer, Bounds on the unitarity triangle, sin 2β and K → neutrino anti-neutrino decays in models with minimal flavor violation, Phys. Rev. D 64 (2001) 115010 [hep-ph/0104238] [INSPIRE].
C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Enhancement of \( B\left({\overline{B}}_d\to {\mu}^{+}{\mu}^{-}\right)/B\left({\overline{B}}_s\to {\mu}^{+}{\mu}^{-}\right) \) in the MSSM with minimal flavor violation and large tan β, Phys. Rev. D 66 (2002) 074021 [hep-ph/0204225] [INSPIRE].
A.J. Buras, Relations between ∆M (s, d) and \( B\left(s,\ d\right)\to \mu \overline{\mu} \) in models with minimal flavor violation, Phys. Lett. B 566 (2003) 115 [hep-ph/0303060] [INSPIRE].
C. Bobeth et al., Upper bounds on rare K and B decays from minimal flavor violation, Nucl. Phys. B 726 (2005) 252 [hep-ph/0505110] [INSPIRE].
V. Cirigliano, B. Grinstein, G. Isidori and M.B. Wise, Minimal flavor violation in the lepton sector, Nucl. Phys. B 728 (2005) 121 [hep-ph/0507001] [INSPIRE].
K. Agashe, M. Papucci, G. Perez and D. Pirjol, Next to minimal flavor violation, hep-ph/0509117 [INSPIRE].
UTfit collaboration, M. Bona et al., The UTfit collaboration report on the status of the unitarity triangle beyond the standard model. I. Model-independent analysis and minimal flavor violation, JHEP 03 (2006) 080 [hep-ph/0509219] [INSPIRE].
B. Grinstein, V. Cirigliano, G. Isidori and M.B. Wise, Grand unification and the principle of minimal flavor violation, Nucl. Phys. B 763 (2007) 35 [hep-ph/0608123] [INSPIRE].
Y. Grossman, Y. Nir, J. Thaler, T. Volansky and J. Zupan, Probing minimal flavor violation at the LHC, Phys. Rev. D 76 (2007) 096006 [arXiv:0706.1845] [INSPIRE].
A.L. Fitzpatrick, G. Perez and L. Randall, Flavor anarchy in a Randall-Sundrum model with 5D minimal flavor violation and a low Kaluza-Klein scale, Phys. Rev. Lett. 100 (2008) 171604 [arXiv:0710.1869] [INSPIRE].
G. Hiller and Y. Nir, Measuring flavor mixing with minimal flavor violation at the LHC, JHEP 03 (2008) 046 [arXiv:0802.0916] [INSPIRE].
P. Paradisi, M. Ratz, R. Schieren and C. Simonetto, Running minimal flavor violation, Phys. Lett. B 668 (2008) 202 [arXiv:0805.3989] [INSPIRE].
T. Hurth, G. Isidori, J.F. Kamenik and F. Mescia, Constraints on new physics in MFV models: a model-independent analysis of ΔF = 1 processes, Nucl. Phys. B 808 (2009) 326 [arXiv:0807.5039] [INSPIRE].
A.L. Kagan, G. Perez, T. Volansky and J. Zupan, General minimal flavor violation, Phys. Rev. D 80 (2009) 076002 [arXiv:0903.1794] [INSPIRE].
C.P. Burgess, M. Trott and S. Zuberi, Light octet scalars, a heavy Higgs and minimal flavour violation, JHEP 09 (2009) 082 [arXiv:0907.2696] [INSPIRE].
J.M. Arnold, M. Pospelov, M. Trott and M.B. Wise, Scalar representations and minimal flavor violation, JHEP 01 (2010) 073 [arXiv:0911.2225] [INSPIRE].
J.M. Arnold, B. Fornal and M. Trott, Prospects and constraints for vector-like MFV matter at LHC, JHEP 08 (2010) 059 [arXiv:1005.2185] [INSPIRE].
B. Batell and M. Pospelov, B s mixing and electric dipole moments in MFV, Phys. Rev. D 82 (2010) 054033 [arXiv:1006.2127] [INSPIRE].
B. Batell, J. Pradler and M. Spannowsky, Dark matter from minimal flavor violation, JHEP 08 (2011) 038 [arXiv:1105.1781] [INSPIRE].
M. Redi, Composite MFV and beyond, Eur. Phys. J. C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].
W. Altmannshofer, S. Gori and G.D. Kribs, A minimal flavor violating 2HDM at the LHC, Phys. Rev. D 86 (2012) 115009 [arXiv:1210.2465] [INSPIRE].
G. Krnjaic and D. Stolarski, Gauging the way to MFV, JHEP 04 (2013) 064 [arXiv:1212.4860] [INSPIRE].
A. Ali and E. Lunghi, Extended minimal flavor violating MSSM and implications for B physics, Eur. Phys. J. C 21 (2001) 683 [hep-ph/0105200] [INSPIRE].
S. Heinemeyer, W. Hollik, F. Merz and S. Penaranda, Electroweak precision observables in the MSSM with nonminimal flavor violation, Eur. Phys. J. C 37 (2004) 481 [hep-ph/0403228] [INSPIRE].
G. Degrassi, P. Gambino and P. Slavich, QCD corrections to radiative B decays in the MSSM with minimal flavor violation, Phys. Lett. B 635 (2006) 335 [hep-ph/0601135] [INSPIRE].
W. Altmannshofer, A.J. Buras and D. Guadagnoli, The MFV limit of the MSSM for low tan β: meson mixings revisited, JHEP 11 (2007) 065 [hep-ph/0703200] [INSPIRE].
G. Degrassi, P. Gambino and P. Slavich, SusyBSG: a Fortran code for BR[B → X s γ] in the MSSM with minimal flavor violation, Comput. Phys. Commun. 179 (2008) 759 [arXiv:0712.3265] [INSPIRE].
M. Carena, A. Menon and C.E.M. Wagner, Minimal flavor violation and the scale of supersymmetry breaking, Phys. Rev. D 79 (2009) 075025 [arXiv:0812.3594] [INSPIRE].
P. Paradisi and D.M. Straub, The SUSY CP problem and the MFV principle, Phys. Lett. B 684 (2010) 147 [arXiv:0906.4551] [INSPIRE].
J. Berger, C. Csáki, Y. Grossman and B. Heidenreich, Mesino oscillation in MFV SUSY, Eur. Phys. J. C 73 (2013) 2408 [arXiv:1209.4645] [INSPIRE].
S.L. Glashow, J. Iliopoulos and L. Maiani, Weak interactions with lepton-hadron symmetry, Phys. Rev. D 2 (1970) 1285 [INSPIRE].
G. Colangelo, E. Nikolidakis and C. Smith, Supersymmetric models with minimal flavour violation and their running, Eur. Phys. J. C 59 (2009) 75 [arXiv:0807.0801] [INSPIRE].
S.S. AbdusSalam, The full 24-parameter MSSM exploration, AIP Conf. Proc. 1078 (2009) 297 [arXiv:0809.0284] [INSPIRE].
C.F. Berger, J.S. Gainer, J.L. Hewett and T.G. Rizzo, Supersymmetry without prejudice, JHEP 02 (2009) 023 [arXiv:0812.0980] [INSPIRE].
M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, More energy, more searches, but the phenomenological MSSM lives on, Phys. Rev. D 88 (2013) 035002 [arXiv:1211.1981] [INSPIRE].
J. Ellis, R.N. Hodgkinson, J.S. Lee and A. Pilaftsis, Flavour geometry and effective Yukawa couplings in the MSSM, JHEP 02 (2010) 016 [arXiv:0911.3611] [INSPIRE].
S.S. AbdusSalam, B.C. Allanach, F. Quevedo, F. Feroz and M. Hobson, Fitting the phenomenological MSSM, Phys. Rev. D 81 (2010) 095012 [arXiv:0904.2548] [INSPIRE].
E. Nikolidakis and C. Smith, Minimal flavor violation, seesaw and R-parity, Phys. Rev. D 77 (2008) 015021 [arXiv:0710.3129] [INSPIRE].
C. Csáki, Y. Grossman and B. Heidenreich, MFV SUSY: a natural theory for R-parity violation, Phys. Rev. D 85 (2012) 095009 [arXiv:1111.1239] [INSPIRE].
J. Berger, M. Perelstein, M. Saelim and P. Tanedo, The same-sign dilepton signature of RPV/MFV SUSY, JHEP 04 (2013) 077 [arXiv:1302.2146] [INSPIRE].
G. Arcadi, L. Di Luzio and M. Nardecchia, Minimal flavour violation and neutrino masses without R-parity, JHEP 05 (2012) 048 [arXiv:1111.3941] [INSPIRE].
C. Smith, Minimal flavor violation in supersymmetric theories, Acta Phys. Polon. Supp. 3 (2010) 53 [arXiv:0909.4444] [INSPIRE].
F. Feroz et al., Bayesian selection of sign(μ) within mSUGRA in global fits including WMAP5 results, JHEP 10 (2008) 064 [arXiv:0807.4512] [INSPIRE].
S.S. AbdusSalam, B.C. Allanach, M.J. Dolan, F. Feroz and M.P. Hobson, Selecting a model of supersymmetry breaking mediation, Phys. Rev. D 80 (2009) 035017 [arXiv:0906.0957] [INSPIRE].
S.S. AbdusSalam and F. Quevedo, Cold dark matter hypotheses in the MSSM, Phys. Lett. B 700 (2011) 343 [arXiv:1009.4308] [INSPIRE].
S.S. AbdusSalam, Can the LHC rule out the MSSM?, Phys. Lett. B 705 (2011) 331 [arXiv:1106.2317] [INSPIRE].
S.S. AbdusSalam et al., Benchmark models, planes, lines and points for future SUSY searches at the LHC, Eur. Phys. J. C 71 (2011) 1835 [arXiv:1109.3859] [INSPIRE].
S.S. AbdusSalam and D. Choudhury, Higgs boson discovery versus sparticles prediction: Impact on the pMSSM’s posterior samples from a Bayesian global fit, UJPA 2 (2014) 155 [arXiv:1210.3331] [INSPIRE].
S.S. AbdusSalam, LHC-7 supersymmetry search interpretation within the phenomenological MSSM, Phys. Rev. D 87 (2013) 115012 [arXiv:1211.0999] [INSPIRE].
S.S. AbdusSalam, Stop-mass prediction in naturalness scenarios within MSSM-25, Int. J. Mod. Phys. A 29 (2014) 1450160 [arXiv:1312.7830] [INSPIRE].
S. Sekmen et al., Interpreting LHC SUSY searches in the phenomenological MSSM, JHEP 02 (2012) 075 [arXiv:1109.5119] [INSPIRE].
A. Bartl et al., General flavor blind MSSM and CP-violation, Phys. Rev. D 64 (2001) 076009 [hep-ph/0103324] [INSPIRE].
J.R. Ellis, J.S. Lee and A. Pilaftsis, B-meson observables in the maximally CP-Violating MSSM with minimal flavour violation, Phys. Rev. D 76 (2007) 115011 [arXiv:0708.2079] [INSPIRE].
L. Mercolli and C. Smith, EDM constraints on flavored CP-violating phases, Nucl. Phys. B 817 (2009) 1 [arXiv:0902.1949] [INSPIRE].
J. Berger et al., The CP-violating pMSSM at the intensity frontier, arXiv:1309.7653 [INSPIRE].
M. Verzocchi, Electroweak physics, talk gven at 34th International Conference on High Energy Physics (ICHEP2008), July 30-August 5, Philadelphia, U.S.A. (2008).
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group, SLD Heavy Flavour Group collaboration, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
LHCb collaboration, First evidence for the decay B 0 s → μ + μ −, Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].
CDF collaboration, A. Abulencia et al., Observation of \( {B}_s^0-{\overline{B}}_s^0 \) oscillations, Phys. Rev. Lett. 97 (2006) 242003 [hep-ex/0609040] [INSPIRE].
BaBar collaboration, B. Aubert et al., Search for the rare leptonic decay \( {B}^{-}\to {\tau}^{-}{\overline{\nu}}_{\tau } \), Phys. Rev. Lett. 95 (2005) 041804 [hep-ex/0407038] [INSPIRE].
Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron and c-hadron properties at the end of 2007, arXiv:0808.1297 [INSPIRE].
WMAP collaboration, E. Komatsu et al., Five-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [INSPIRE].
ATLAS collaboration, Combined measurements of the mass and signal strength of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-014 (2013).
CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005 (2013).
LHCb collaboration, Search for the rare decays B 0 s → μ + μ − and B 0 → μ + μ −, Phys. Lett. B 699 (2011) 330 [arXiv:1103.2465] [INSPIRE].
Muon g-2 collaboration, R. McNabb, An improved limit on the electric dipole moment of the muon, hep-ex/0407008 [INSPIRE].
Heavy Flavor Averaging Group collaboration, E. Barberio et al., Averages of b-hadron properties at the end of 2006, arXiv:0704.3575 [INSPIRE].
Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
B.C. Regan, E.D. Commins, C.J. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].
W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e − colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
W. Porod and F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].
A. Crivellin et al., SUSY FLAVOR v2: a computational tool for FCNC and CP-violating processes in the MSSM, Comput. Phys. Commun. 184 (2013) 1004 [arXiv:1203.5023] [INSPIRE].
J.E. Camargo-Molina, B. O’Leary, W. Porod and F. Staub, Vevacious : a tool for finding the global minima of one-loop effective potentials with many scalars, Eur. Phys. J. C 73 (2013) 2588 [arXiv:1307.1477] [INSPIRE].
J.E. Camargo-Molina, B. Garbrecht, B. O’Leary, W. Porod and F. Staub, Constraining the natural MSSM through tunneling to color-breaking vacua at zero and non-zero temperature, Phys. Lett. B 737 (2014) 156 [arXiv:1405.7376] [INSPIRE].
B.C. Allanach et al., SUSY Les Houches accord 2, Comput. Phys. Commun. 180 (2009) 8 [arXiv:0801.0045] [INSPIRE].
P.Z. Skands et al., SUSY Les Houches accord: Interfacing SUSY spectrum calculators, decay packages and event generators, JHEP 07 (2004) 036 [hep-ph/0311123] [INSPIRE].
G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, Dark matter direct detection rate in a generic model with MicrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747 [arXiv:0803.2360] [INSPIRE].
S. Heinemeyer, W. Hollik, D. Stöckinger, A.M. Weber and G. Weiglein, Precise prediction for M(W) in the MSSM, JHEP 08 (2006) 052 [hep-ph/0604147] [INSPIRE].
S. Heinemeyer, W. Hollik, A.M. Weber and G. Weiglein, Z pole observables in the MSSM, JHEP 04 (2008) 039 [arXiv:0710.2972] [INSPIRE].
F. Feroz and M.P. Hobson, Multimodal nested sampling: an efficient and robust alternative to MCMC methods for astronomical data analysis, Mon. Not. Roy. Astron. Soc. 384 (2008) 449 [arXiv:0704.3704] [INSPIRE].
F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601 [arXiv:0809.3437] [INSPIRE].
J. Skilling, Nested sampling, AIP Proc. 735 (2004) 395.
M.M. El Kheishen, A.A. Aboshousha and A.A. Shafik, Analytic formulas for the neutralino masses and the neutralino mixing matrix, Phys. Rev. D 45 (1992) 4345 [INSPIRE].
J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
ATLAS collaboration, Search for neutral Higgs bosons of the minimal supersymmetric standard model in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 11 (2014) 056 [arXiv:1409.6064] [INSPIRE].
CMS collaboration, Search for neutral MSSM Higgs bosons decaying to a pair of τ leptons in pp collisions, JHEP 10 (2014) 160 [arXiv:1408.3316] [INSPIRE].
A.G. Cohen, D.B. Kaplan and A.E. Nelson, The more minimal supersymmetric standard model, Phys. Lett. B 388 (1996) 588 [hep-ph/9607394] [INSPIRE].
M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].
S. AbdusSalam, B. Allanach, F. Quevedo, F. Feroz and M. Hobson, The posterior sample points’ SLHA files from the Bayesian fits of the phenomenological MSSM, Harvard Dataverse Network (2013).
The International Linear Collider technical design report, volumes 1-5, ILC-REPORT-2013-040 (2013).
Future Circular Collider (FCC) study, http://cern.ch/fcc.
M. Aicheler et al., A multi-TeV linear collider based on CLIC technology — CLIC conceptual design report, CERN-2012-007 (2012).
A. Fowlie and M. Raidal, Prospects for constrained supersymmetry at \( \sqrt{s}=33 \) TeV and \( \sqrt{s}=100 \) TeV proton-proton super-colliders, Eur. Phys. J. C 74 (2014) 2948 [arXiv:1402.5419] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1411.1663
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
AbdusSalam, S.S., Burgess, C.P. & Quevedo, F. MFV reductions of MSSM parameter space. J. High Energ. Phys. 2015, 73 (2015). https://doi.org/10.1007/JHEP02(2015)073
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP02(2015)073