Nothing Special   »   [go: up one dir, main page]

Skip to main content
Log in

The expected number of parts in a partition ofn

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Forn a positive integer letp(n) denote the number of partitions ofn into positive integers and letp(n,k) denote the number of partitions ofn into exactlyk parts. Let\(P(n) = \sum\limits_{k = 1}^\infty {kp(n,k)} \), thenP(n) represents the total number of parts in all the partitions ofn. In this paper we obtain the following asymptotic formula for\({{P(n)} \mathord{\left/ {\vphantom {{P(n)} {p(n)}}} \right. \kern-\nulldelimiterspace} {p(n)}}:{{P(n)} \mathord{\left/ {\vphantom {{P(n)} {p(n)}}} \right. \kern-\nulldelimiterspace} {p(n)}} = \sqrt {{{3n} \mathord{\left/ {\vphantom {{3n} {2\pi }}} \right. \kern-\nulldelimiterspace} {2\pi }}} (\log n + 2\gamma - \log {\pi \mathord{\left/ {\vphantom {\pi 6}} \right. \kern-\nulldelimiterspace} 6}) + 0(\log ^3 n).\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knopp, M.: Modular Functions in Analytic Number Theory. Chicago: Markham. 1970.

    Google Scholar 

  2. Luthra, S. M.: On the average number of summands in a partition ofn. J. Ind. Acad. Sci.23, 483–498 (1957).

    Google Scholar 

  3. Newman, D. J.: A simplified proof of the partition formula. Michigan Math. J.9, 283–287 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kessler, I., Livingston, M. The expected number of parts in a partition ofn . Monatshefte für Mathematik 81, 203–212 (1976). https://doi.org/10.1007/BF01303193

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303193

Keywords

Navigation