Abstract
Forn a positive integer letp(n) denote the number of partitions ofn into positive integers and letp(n,k) denote the number of partitions ofn into exactlyk parts. Let\(P(n) = \sum\limits_{k = 1}^\infty {kp(n,k)} \), thenP(n) represents the total number of parts in all the partitions ofn. In this paper we obtain the following asymptotic formula for\({{P(n)} \mathord{\left/ {\vphantom {{P(n)} {p(n)}}} \right. \kern-\nulldelimiterspace} {p(n)}}:{{P(n)} \mathord{\left/ {\vphantom {{P(n)} {p(n)}}} \right. \kern-\nulldelimiterspace} {p(n)}} = \sqrt {{{3n} \mathord{\left/ {\vphantom {{3n} {2\pi }}} \right. \kern-\nulldelimiterspace} {2\pi }}} (\log n + 2\gamma - \log {\pi \mathord{\left/ {\vphantom {\pi 6}} \right. \kern-\nulldelimiterspace} 6}) + 0(\log ^3 n).\).
Similar content being viewed by others
References
Knopp, M.: Modular Functions in Analytic Number Theory. Chicago: Markham. 1970.
Luthra, S. M.: On the average number of summands in a partition ofn. J. Ind. Acad. Sci.23, 483–498 (1957).
Newman, D. J.: A simplified proof of the partition formula. Michigan Math. J.9, 283–287 (1962).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kessler, I., Livingston, M. The expected number of parts in a partition ofn . Monatshefte für Mathematik 81, 203–212 (1976). https://doi.org/10.1007/BF01303193
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF01303193