Nothing Special   »   [go: up one dir, main page]

Skip to main content

Algorithms for Large Integer Matrix Problems

  • Conference paper
  • First Online:
Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC 2001)

Abstract

New algorithms are described and analysed for solving various problems associated with a large integer matrix: computing the Hermite form, computing a kernel basis, and solving a system of linear diophantine equations. The algorithms are space-efficient and for certain types of input matrices — for example, those arising during the computation of class groups and regulators — are faster than previous methods. Experiments with a prototype implementation support the running time analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Cohen and H. Lenstra, Jr. Heuristics on class groups of number fields. In Number Theory, Lecture notes in Math., volume 1068, pages 33–62. Springer-Verlag, New York, 1983.

    Google Scholar 

  2. J. D. Dixon. Exact solution of linear equations using p-adic expansions. Numer. Math., 40:137–141, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. D. Domich, R. Kannan, and L. E. Trotter, Jr. Hermite normal form computation using modulo determinant arithmetic. Mathematics of Operations Research, 12(1):50–59, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. L. Hafner and K. S. McCurley. A rigorous subexponential algorithm for computation of class groups. J. Amer. Math. Soc., 2:837–850, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical structure of finite abelian groups and the Hermite and Smith normal forms of an integer matrix. SIAM Journal of Computing, 18(4):658–669, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  6. H. Iwaniec. On the problem of Jacobsthal. Demonstratio Mathematica, 11(1):225–231, 1978.

    MATH  MathSciNet  Google Scholar 

  7. M. J. Jacobson, Jr. Subexponential Class Group Computation in Quadratic Orders. PhD thesis, Technischen Universität Darmstadt, 1999.

    Google Scholar 

  8. F. Lübeck. On the computation of elementary divisors of integer matrices. Journal of Symbolic Computation, 2001. To appear.

    Google Scholar 

  9. T. Mulders and A. Storjohann. Diophantine linear system solving. In S. Dooley, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’ 99, pages 281–288. ACM Press, 1999.

    Google Scholar 

  10. T. Mulders and A. Storjohann. Rational solutions of singular linear systems. In C. Traverso, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’ 00, pages 242–249. ACM Press, 2000.

    Google Scholar 

  11. A. Storjohann. A solution to the extended gcd problem with applications. In W. W. Küchlin, editor, Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’ 97, pages 109–116. ACM Press, 1997.

    Google Scholar 

  12. A. Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis, ETH-Swiss Federal Institute of Technology, 2000.

    Google Scholar 

  13. J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

    Google Scholar 

  14. D. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf. Theory, IT-32:54–62, 1986.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Giesbrecht, M., Jr. Jacobson, M., Storjohann, A. (2001). Algorithms for Large Integer Matrix Problems. In: Boztaş, S., Shparlinski, I.E. (eds) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. AAECC 2001. Lecture Notes in Computer Science, vol 2227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45624-4_31

Download citation

  • DOI: https://doi.org/10.1007/3-540-45624-4_31

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-42911-1

  • Online ISBN: 978-3-540-45624-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics