Nothing Special   »   [go: up one dir, main page]

Skip to main content

Four Good Reasons to Use an Interior Point Solver Within a MIP Solver

  • Conference paper
  • First Online:
Operations Research Proceedings 2017

Part of the book series: Operations Research Proceedings ((ORP))

Abstract

“Interior point algorithms are a good choice for solving pure LPs or QPs, but when you solve MIPs, all you need is a dual simplex” This is the common conception which disregards that an interior point solution provides some unique structural insight into the problem at hand. In this paper, we will discuss some of the benefits that an interior point solver brings to the solution of difficult MIPs within FICO Xpress. This includes many different components of the MIP solver such as branching variable selection, primal heuristics, preprocessing, and of course the solution of the LP relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achterberg, T. (2010). LP basis selection and cutting planes.

    Google Scholar 

  2. Baena, D., & Castro, J. (2011). Using the analytic center in the feasibility pump. Operations Research Letters, 39(5), 310–317.

    Article  Google Scholar 

  3. Bajgiran, O. S., Cire, A. A., & Rousseau, L. -M. (2017). A first look at picking dual variables for maximizing reduced cost fixing. In International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (pp. 221–228). Springer.

    Chapter  Google Scholar 

  4. Ben-Ameur, W., & Neto, J. (2007). Acceleration of cutting-plane and column generation algorithms: Applications to network design. Networks, 49(1), 3–17.

    Article  Google Scholar 

  5. Berthold, T. (2013). Measuring the impact of primal heuristics. Operations Research Letters, 41(6), 611–614.

    Article  Google Scholar 

  6. Berthold, T., Farmer, J., Heinz, S., & Perregaard, M. (2017). Parallelization of the FICO xpress-optimizer. Optimization Methods and Software, 1–12.

    Google Scholar 

  7. Boland, N. I., Eberhard, A. C., Engineer, F. G., Fischetti, M., Savelsbergh, M. W. P., & Tsoukalas, A. (2014). Boosting the feasibility pump. Mathematical Programming Computation, 6(3), 255–279.

    Article  Google Scholar 

  8. Fischetti, M., Glover, F., & Lodi, A. (2005). The feasibility pump. Mathematical Programming, 104(1), 91–104.

    Article  Google Scholar 

  9. Fischetti, M., & Monaci, M. (2014). Proximity search for 0–1 mixed-integer convex programming. Journal of Heuristics, 20(6), 709–731.

    Article  Google Scholar 

  10. Fischetti, M., & Salvagnin, D. (2010). An in-out approach to disjunctive optimization. In International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming (pp. 136–140). Springer.

    Chapter  Google Scholar 

  11. Goffin, J. -L., & Vial, J. -P. (2002). Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method. Optimization Methods and Software, 17(5), 805–867.

    Article  Google Scholar 

  12. Gondzio, J., Du Merle, O., Sarkissian, R., & Vial, J. -P. (1996). ACCPM–a library for convex optimization based on an analytic center cutting plane method. European Journal of Operational Research, 94(1), 206–211.

    Article  Google Scholar 

  13. Karmarkar, N. (1984). A new polynomial-time algorithm for linear programming. In Proceedings of the sixteenth annual ACM symposium on Theory of computing (pp. 302–311). ACM.

    Google Scholar 

  14. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., et al. (2011). MIPLIB 2010. Mathematical Programming Computation, 3(2), 103–163.

    Article  Google Scholar 

  15. Laundy, R., Perregaard, M., Tavares, G., Tipi, H., & Vazacopoulos, A. (2009). Solving hard mixed-integer programming problems with Xpress-MP: a MIPLIB 2003 case study. INFORMS Journal on Computing, 21(2), 304–313.

    Article  Google Scholar 

  16. Mészáros, C. (1999). The bpmpd interior point solver for convex quadratic problems. Optimization Methods and Software, 11(1–4), 431–449.

    Article  Google Scholar 

  17. Mittelmann, H. Benchmarks for optimization software: Feasibility benchmark. http://plato.asu.edu/bench.html.

  18. Naoum-Sawaya, J. (2013). Recursive central rounding for mixed integer programs. Computers and Operations Research.

    Google Scholar 

  19. Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.

    Book  Google Scholar 

  20. Nesterov, Y., & Nemirovski, A. (1994). Interior-point polynomial algorithms in convex programming., Studies in applied and numerical mathematics Philadelphia: Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  21. Sonnevend, G. (1986). An “analytical centre” for polyhedrons and new classes of global algorithms for linear (smooth, convex) programming. In A. Prékopa, J. Szelezsáan, & B. Strazicky (Eds.), System modelling and optimization (Vol. 84, pp. 866–875)., Lecture notes in control and information sciences Berlin: Springer.

    Chapter  Google Scholar 

  22. Sonnevend, G. (1989). Applications of the notion of analytic center in approximation (estimation) problems. Journal of Computational and Applied Mathematics, 28, 349–358.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Berthold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berthold, T., Perregaard, M., Mészáros, C. (2018). Four Good Reasons to Use an Interior Point Solver Within a MIP Solver. In: Kliewer, N., Ehmke, J., Borndörfer, R. (eds) Operations Research Proceedings 2017. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-319-89920-6_22

Download citation

Publish with us

Policies and ethics