Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Improved Kernel for the Complementary Maximal Strip Recovery Problem

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

We study the parameterized complexity of the complementary maximal strip recovery problem (CMSR), which is to delete the minimum number of gene markers from two genetic maps so that the remaining markers in the maps can be partitioned into matched strips. It is known that the CMSR problem has a kernel of size bounded by 78k, and a question has been raised whether this bound can be further improved. In this paper, we answer this question by presenting an improved kernel of size 58k for the CMSR problem. Our results are based on the techniques of building a weighted bipartite graph from a given instance of the CMSR problem so that three additional and more powerful reduction rules can be applied to further reduce the kernel size.

This work is supported by the National Natural Science Foundation of China under Grants (61232001, 61472449, 61420106009, 61402054).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer-Verlag (1999)

    Google Scholar 

  2. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  3. Niedermeier, R.: Invitation to fixed-parameter algorithms (2006)

    Google Scholar 

  4. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  5. Zheng, C., Zhu, Q., Sankoff, D.: Removing noise and ambiguities from comparative maps in rearrangement analysis. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(4), 515–522 (2007)

    Article  Google Scholar 

  6. Wang, L., Zhu, B.: On the tractability of maximal strip recovery. Journal of Computational Biology 17(7), 907–914 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bulteau, L., Fertin, G., Rusu, I.: Maximal strip recovery problem with gaps: hardness and approximation algorithms. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 710–719. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Jiang, M.: Inapproximability of maximal strip recovery. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 616–625. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Jiang, M.: Inapproximability of maximal strip recovery: II. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 53–64. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Choi, V., Zheng, C., Zhu, Q., Sankoff, D.: Algorithms for the extraction of synteny blocks from comparative maps. In: Giancarlo, R., Hannenhalli, S. (eds.) WABI 2007. LNCS (LNBI), vol. 4645, pp. 277–288. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Chen, Z., Fu, B., Jiang, M., Zhu, B.: On recovering syntenic blocks from comparative maps. J. Comb. Optim. 18(3), 307–318 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jiang, H., Li, Z., Lin, G., Wang, L., Zhu, B.: Exact and approximation algorithms for the complementary maximal strip recovery problem. J. Comb. Optim. 23(4), 493–506 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Li, Z., Goebel, R., Wang, L., Lin, G.: An improved approximation algorithm for the complementary maximal strip recovery problem. J. Comput. Syst. Sci. 78(3), 720–730 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bulteau, L., Fertin, G., Jiang, M., Rusu, I.: Tractability and approximability of maximal strip recovery. Theor. Comput. Sci. 440(441), 14–28 (2012)

    Article  MathSciNet  Google Scholar 

  15. Jiang, H., Zhu, B.: A linear kernel for the complementary maximal strip recovery problem. Journal of Computer and System Sciences (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, S., Li, W., Wang, J. (2015). An Improved Kernel for the Complementary Maximal Strip Recovery Problem. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics