Nothing Special   »   [go: up one dir, main page]

Skip to main content

Friend Recommendation in a Social Bookmarking System: Design and Architecture Guidelines

  • Conference paper
  • First Online:
Intelligent Systems in Science and Information 2014 (SAI 2014)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 591))

Included in the following conference series:

Abstract

Social media systems allow users to share resources with the people connected to them. In order to handle the exponential growth of the content in these systems and of the amount of users that populate them, recommender systems have been introduced. As social media systems with different purposes arose, also different types of social recommender systems were developed in order to filter the specific information that each domain handles. A form of social media, known as social bookmarking system, allows to share bookmarks in a social network. A user adds as a friend or follows another user and receives updates on the bookmarks added by that user. In this paper, we present an analysis of the state-of-the-art on user recommendation in social environments and of the structure of a social bookmarking system, in order to derive design guidelines and an architecture of a friend recommender system in the social bookmarking domain. This study can be useful for future research, by highlighting the aspects that characterize this domain and the features that this type of recommender system has to offer.

This work is partially funded by Regione Sardegna under project SocialGlue, through PIA—Pacchetti Integrati di Agevolazione “Industria Artigianato e Servizi” (annualità 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.delicious.com.

  2. 2.

    http://www.citeulike.org/.

  3. 3.

    http://www.flickr.com/.

  4. 4.

    http://techcrunch.com/2014/02/10/flickr-at-10-1m-photos-shared-per-day-170-increase-since-making-1tb-free/.

  5. 5.

    Given that traditional techniques to manually categorize data cannot be applied in social environments [4] and that clustering techniques represent a good form to extract information for recommendation purposes [3], the resources could be clustered based on the tags used to classify them, in order to extract some meta-information about a group of resources related to a specific topic.

References

  1. Arasu, A., Ganti, V., Kaushik, R.: Efficient exact set-similarity joins. In: Proceedings of the 32nd International Conference on Very Large Data Bases. pp. 918–929. VLDB’ 06, VLDB Endowment (2006). http://dl.acm.org/citation.cfm?id=1182635.1164206

  2. Arru, G., Gurini, D.F., Gasparetti, F., Micarelli, A., Sansonetti, G.: Signal-based user recommendation on twitter. In: Carr, L., Laender, A.H.F., Lóscio, B.F., King, I., Fontoura, M., Vrandecic, D., Aroyo, L., de Oliveira, J.P.M., Lima, F., Wilde, E. (eds.) 22nd International World Wide Web Conference, WWW ‘13, Rio de Janeiro, Brazil, 13–17 May 2013, Companion Volume. pp. 941–944. International World Wide Web Conferences Steering Committee/ACM (2013)

    Google Scholar 

  3. Boratto, L., Carta, S., Manca, M., Mulas, F., Pilloni, P., Pinna, G., Vargiu, E.: A clustering approach for tag recommendation in social environments. Int. J. e-Bus. Dev. 3, 126–136 (2013)

    Google Scholar 

  4. Boratto, L., Carta, S., Vargiu, E.: Ratc: A robust automated tag clustering technique. In: Noia, T.D., Buccafurri, F. (eds.) e-Commerce and Web Technologies. In: 10th International Conference, EC-Web 2009, Linz, Austria, 1–4 Sept 2009. Proceedings of Lecture Notes in Computer Science, vol. 5692, pp. 324–335. Springer (2009)

    Google Scholar 

  5. Boyd, D.M., Ellison, N.B.: Social network sites: Definition, history, and scholarship. J. Comput.-Mediated Commun. 13(1), 210–230 (2007)

    Article  Google Scholar 

  6. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence. pp. 43–52. UAI’98, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1998). http://dl.acm.org/citation.cfm?id=2074094.2074100

  7. Broder, A.: On the resemblance and containment of documents. In: Proceedings of the Compression and Complexity of Sequences 1997. pp. 21 SEQUENCES ‘97, IEEE Computer Society, Washington, DC, USA (1997). http://dl.acm.org/citation.cfm?id=829502.830043

  8. Brzozowski, M.J., Romero, D.M.: Who should i follow? Recommending people in directed social networks. In: Adamic, L.A., Baeza-Yates, R.A., Counts, S. (eds.) Proceedings of the Fifth International Conference on Weblogs and Social Media, Barcelona, Catalonia, Spain, 17–21 July 2011. The AAAI Press (2011)

    Google Scholar 

  9. Cantador, I., Brusilovsky, P., Kuflik, T.: Second workshop on information heterogeneity and fusion in recommender systems (hetrec2011). In: Mobasher, B., Burke, R.D., Jannach, D., Adomavicius, G. (eds.) Proceedings of the 2011 ACM Conference on Recommender Systems, RecSys 2011, Chicago, IL, USA, 23–27 Oct 2011. pp. 387–388. ACM (2011)

    Google Scholar 

  10. Chen, J., Geyer, W., Dugan, C., Muller, M.J., Guy, I.: Make new friends, but keep the old: recommending people on social networking sites. In: Jr., DRO, Arthur, R.B., Hinckley, K., Morris, M.R., Hudson, S.E., Greenberg, S. (eds.) Proceedings of the 27th International Conference on Human Factors in Computing Systems, CHI 2009, Boston, MA, USA, 4–9 April 2009. pp. 201–210. ACM (2009)

    Google Scholar 

  11. Farooq, U., Kannampallil, T.G., Song, Y., Ganoe, C.H., Carroll, J.M., Giles, C.L.: Evaluating tagging behavior in social bookmarking systems: metrics and design heuristics. In: Gross, T., Inkpen, K. (eds.) Proceedings of the 2007 International ACM SIGGROUP Conference on Supporting Group Work, GROUP 2007, Sanibel Island, Florida, USA, 4–7 Nov 2007. pp. 351–360. ACM (2007)

    Google Scholar 

  12. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.: Wtf: the who to follow service at twitter. In: Schwabe, D., Almeida, V.A.F., Glaser, H., Baeza-Yates, R.A., Moon, S.B. (eds.) 22nd International World Wide Web Conference, WWW’13, Rio de Janeiro, Brazil, 13–17 May 2013. pp. 505–514. International World Wide Web Conferences Steering Committee/ACM (2013)

    Google Scholar 

  13. Guy, I., Chen, L., Zhou, M.X.: Introduction to the special section on social recommender systems. ACM TIST 4(1), 7 (2013)

    Google Scholar 

  14. Guy, I., Ronen, I., Wilcox, E.: Do you know?: recommending people to invite into your social network. In: Conati, C., Bauer, M., Oliver, N., Weld, D.S. (eds.) In: Proceedings of the 2009 International Conference on Intelligent User Interfaces, 8–11 Feb 2009, Sanibel Island, Florida, USA. pp. 77–86. ACM (2009)

    Google Scholar 

  15. Hannon, J., Bennett, M., Smyth, B.: Recommending twitter users to follow using content and collaborative filtering approaches. In: Amatriain, X., Torrens, M., Resnick, P., Zanker, M. (eds.) Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, 26–30 Sept 2010. pp. 199–206. ACM (2010)

    Google Scholar 

  16. Hotho, A., Jäschke, R., Schmitz, C., Stumme, G.: Bibsonomy: a social bookmark and publication sharing system. In: Proceedings of the First Conceptual Structures Tool Interoperability Workshop at the 14th International Conference on Conceptual Structures. pp. 87–102 (2006)

    Google Scholar 

  17. Liben-Nowell, D., Kleinberg, J.M.: The link prediction problem for social networks. In: Proceedings of the 2003 ACM CIKM International Conference on Information and Knowledge Management, New Orleans, Louisiana, USA, 2–8 Nov 2003. pp. 556–559. ACM (2003)

    Google Scholar 

  18. Lops, P., de Gemmis, M., Semeraro, G.: Content-based recommender systems: state of the art and trends. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 73–105. Springer (2011)

    Google Scholar 

  19. Lund, B., Hammond, T., Hannay, T., Flack, M.: Social bookmarking tools (ii): a case study—connotea. D-Lib Magazine 11(4) (2005)

    Google Scholar 

  20. Manca, M., Boratto, L., Carta, S.: Design and architecture of a friend recommender system in the social bookmarking domain. In: Proceedings of the Science and Information Conference 2014. pp. 838–842 (2014)

    Google Scholar 

  21. Manca, M., Boratto, L., Carta, S.: Mining user behavior in a social bookmarking system—a delicious friend recommender system. In: Proceedings of the 3rd International Conference on Data Management Technologies and Applications (DATA 2014). pp. 331–338 (2014)

    Google Scholar 

  22. Pearson, K.: Mathematical contributions to the theory of evolution. iii. Regression, heredity and panmixia. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Math. or Phys. Character (1896–1934) 187, 253–318 (1896)

    Google Scholar 

  23. Quercia, D., Capra, L.: Friendsensing: recommending friends using mobile phones. In: Bergman, L.D., Tuzhilin, A., Burke, R.D., Felfernig, A., Schmidt-Thieme, L. (eds.) Proceedings of the 2009 ACM Conference on Recommender Systems, RecSys 2009, New York, 23–25 Oct 2009. pp. 273–276. ACM (2009)

    Google Scholar 

  24. Ratiu, F.: Facebook: people you may know (May 2008), https://blog.facebook.com/blog.php?post=15610312130

  25. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems handbook. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Berlin (2011)

    Google Scholar 

  26. Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J., Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: Hinds, P.J., Martin, D. (eds.) Proceedings of the 2006 ACM Conference on Computer Supported Cooperative Work, CSCW 2006, Banff, Alberta, Canada, 4–8 Nov 2006. pp. 181–190. ACM (2006)

    Google Scholar 

  27. Simon, H.A.: Designing organizations for an information rich world. In: Greenberger, M. (ed.) Computers, Communications, and the Public Interest, pp. 37–72. Johns Hopkins Press, Baltimore (1971)

    Google Scholar 

  28. Xiong, H., Shekhar, S., Tan, P.N., Kumar, V.: Exploiting a support-based upper bound of pearson’s correlation coefficient for efficiently identifying strongly correlated pairs. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 334–343. KDD ‘04, ACM, New York, NY, USA (2004). http://doi.acm.org/10.1145/1014052.1014090

  29. Zhou, T.C., Ma, H., Lyu, M.R., King, I.: Userrec: a user recommendation framework in social tagging systems. In: Fox, M., Poole, D. (eds.) Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010. AAAI Press (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovico Boratto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Manca, M., Boratto, L., Carta, S. (2015). Friend Recommendation in a Social Bookmarking System: Design and Architecture Guidelines. In: Arai, K., Kapoor, S., Bhatia, R. (eds) Intelligent Systems in Science and Information 2014. SAI 2014. Studies in Computational Intelligence, vol 591. Springer, Cham. https://doi.org/10.1007/978-3-319-14654-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14654-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-14653-9

  • Online ISBN: 978-3-319-14654-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics