Nothing Special   »   [go: up one dir, main page]

Skip to main content

Probabilistic Lookahead Strong Branching via a Stochastic Abstract Branching Model

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2024)

Abstract

Strong Branching (SB) is a cornerstone of all modern branching rules used in the Branch-and-Bound (BnB) algorithm, which is at the center of Mixed-Integer Programming solvers. In its full form, SB evaluates all variables to branch on and then selects the one producing the best relaxation, leading to small trees, but high runtimes. State-of-the-art branching rules therefore use SB with working limits to achieve both small enough trees and short run times. So far, these working limits have been established empirically. In this paper, we introduce a theoretical approach to guide how much SB to use at each node within the BnB. We first define an abstract stochastic tree model of the BnB algorithm where the geometric mean dual gains of all variables follow a given probability distribution. This model allows us to relate expected dual gains to tree sizes and explicitly compare the cost of sampling an additional SB candidate with the reward in expected tree size reduction. We then leverage the insight from the abstract model to design a new stopping criterion for SB, which fits a distribution to the dual gains and, at each node, dynamically continues or interrupts SB. This algorithm, which we refer to as Probabilistic Lookahead Strong Branching, improves both the tree size and runtime over MIPLIB instances, providing evidence that the method not only changes the amount of SB, but allocates it better.

G. Mexi and S. Shamsi—The first two authors contributed equally to the work presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The branching rule is integrated in github.com/matbesancon/scip on the strongbranching_dynamiclookahead_2 branch.

  2. 2.

    The precise subset used will be made available in the companion repository of our paper.

References

  1. Achterberg, T.: Constraint integer programming. Ph.D. thesis, Technische Universitat Berlin (2007)

    Google Scholar 

  2. Achterberg, T., Berthold, T.: Hybrid branching. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 309–311. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_23

    Chapter  Google Scholar 

  3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Article  MathSciNet  Google Scholar 

  4. Anderson, D., Le Bodic, P., Morgan, K.: Further results on an abstract model for branching and its application to mixed integer programming. Math. Program. 190(1–2), 811–841 (2021)

    Article  MathSciNet  Google Scholar 

  5. Applegate, D., Bixby, R., Cook, W., Chvátal, V.: On the solution of traveling salesman problems (1998)

    Google Scholar 

  6. Bartoszyński, R., Govindarajulu, Z.: The secretary problem with interview cost. Sankhyā: Indian J. Stat. Ser. B 11–28 (1978)

    Google Scholar 

  7. Besancon, M., et al.: Distributions.jl: definition and modeling of probability distributions in the JuliaStats ecosystem. J. Stat. Softw. 98(16), 1-30 (2021). https://doi.org/10.18637/jss.v098.i16

  8. Bestuzheva, K., et al.: Enabling research through the SCIP optimization suite 8.0. ACM Trans. Math. Softw. 49(2), 1–21 (2023)

    Article  MathSciNet  Google Scholar 

  9. Beyhaghi, H., Cai, L.: Pandora’s problem with nonobligatory inspection: optimal structure and a PTAS

    Google Scholar 

  10. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib’a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)

    Article  MathSciNet  Google Scholar 

  11. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming Models. Springer, Cham (2014)

    Book  Google Scholar 

  12. Dey, S.S., Dubey, Y., Molinaro, M., Shah, P.: A theoretical and computational analysis of full strong-branching. Math. Program. 1–34 (2023)

    Google Scholar 

  13. Gamrath, G., et al.: The SCIP optimization suite 7.0 (2020)

    Google Scholar 

  14. Gamrath, G., Berthold, T., Salvagnin, D.: An exploratory computational analysis of dual degeneracy in mixed-integer programming. EURO J. Comput. Optim. 8(3–4), 241–261 (2020)

    Article  MathSciNet  Google Scholar 

  15. Gianini, J., Samuels, S.M.: The infinite secretary problem. Ann. Probab. 4(3), 418–432 (1976)

    Article  MathSciNet  Google Scholar 

  16. Gleixner, A., et al.: MIPLIB 2017: data-driven compilation of the 6th mixed-integer programming library. Math. Program. Comput. 13(3), 443–490 (2021)

    Article  MathSciNet  Google Scholar 

  17. Hendel, G.: Enhancing MIP branching decisions by using the sample variance of pseudo costs. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_14

    Chapter  Google Scholar 

  18. Koch, T., Berthold, T., Pedersen, J., Vanaret, C.: Progress in mathematical programming solvers from 2001 to 2020. EURO J. Comput. Optim. 10, 100031 (2022)

    Article  MathSciNet  Google Scholar 

  19. Le Bodic, P., Nemhauser, G.: An abstract model for branching and its application to mixed integer programming. Math. Program. 166(1–2), 369–405 (2017)

    Article  MathSciNet  Google Scholar 

  20. Lodi, A., Tramontani, A.: Performance variability in mixed-integer programming. In: Theory Driven by Influential Applications, pp. 1–12. INFORMS (2013)

    Google Scholar 

  21. Turner, M., Berthold, T., Besançon, M., Koch, T.: Branching via cutting plane selection: improving hybrid branching. arXiv preprint arXiv:2306.06050 (2023)

  22. Vigerske, S.: MINLPLib: a library of mixed-integer and continuous nonlinear programming instances (2018). https://www.minlplib.org. Accessed Dec 2023

  23. Vigerske, S., Gleixner, A.: SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework. Optim. Methods Softw. 33(3), 563–593 (2018)

    Article  MathSciNet  Google Scholar 

  24. Weitzman, M.: Optimal Search for the Best Alternative, vol. 78. Department of Energy (1978)

    Google Scholar 

Download references

Acknowledgements

Research reported in this paper was partially supported through the Research Campus Modal funded by the German Federal Ministry of Education and Research (fund numbers 05M14ZAM, 05M20ZBM). We thank Nicolas Gast and Bruno Gaujal for discussions on online decision-making including the Pandora’s box problem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioni Mexi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mexi, G., Shamsi, S., Besançon, M., Le Bodic, P. (2024). Probabilistic Lookahead Strong Branching via a Stochastic Abstract Branching Model. In: Dilkina, B. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2024. Lecture Notes in Computer Science, vol 14743. Springer, Cham. https://doi.org/10.1007/978-3-031-60599-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-60599-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-60601-4

  • Online ISBN: 978-3-031-60599-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics