Abstract
This essay is a nontechnical primer for a broader audience, in which I paint a broad-brush picture of modern cosmology. I begin by reviewing the evidence for the big bang, including the expansion of our Universe, the cosmic microwave background, and the primordial abundances of the light elements. Next, I discuss how these and other cosmological observations can be well explained by means of the concordance model of cosmology, putting a particular emphasis on the composition of the cosmic energy budget in terms of visible matter, dark matter, and dark energy. This sets the stage for a short overview of the history of the Universe from the earliest moments of its existence all the way to the accelerated expansion at late times and beyond. Finally, I summarize the current status of the field, including the challenges it is currently facing such as the Hubble tension, and conclude with an outlook onto the bright future that awaits us in the coming years and decades. The text is complemented by an extensive bibliography serving as a guide for readers who wish to delve deeper.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
E.W. Kolb, M.S. Turner, The Early Universe (CRC Press, Boca Raton, 1994)
V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)
S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)
S. Dodelson, F. Schmidt, Modern Cosmology, 2nd edn. (Academic, Amsterdam, 2020)
P.J.E. Peebles, Cosmology’s Century (Princeton University Press, Princeton, 2020)
C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)
S.M. Carroll, Spacetime and Geometry (Cambridge University Press, Cambridge, 2019)
A. Friedmann, Über die Krümmung des Raumes. Zeitschrift für Physik 10, 377 (1922). https://doi.org/10.1007/BF01332580
R. Barnes, The Friedman-Lemaître-Robertson-Walker Metric: a centennial review, arXiv:2201.13120
G. Lemaître, A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Annales Soc. Sci. Bruxelles A 47, 49 (1927). https://doi.org/10.1007/s10714-013-1548-3
E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci 15, 168 (1929). https://doi.org/10.1073/pnas.15.3.168
E. Hubble, M.L. Humason, The velocity-distance relation among extra-galactic nebulae. Astrophys. J 74, 43 (1931). https://doi.org/10.1086/143323
V. Slipher, The radial velocity of the Andromeda Nebula. Lowell Obs. Bull. 1, 56 (1913)
K. Lundmark, The determination of the curvature of space-time in de Sitter’s world. Mon. Not. Roy. Astron. Soc. 84, 747 (1924)
E.R. Harrison, Darkness at Night: A Riddle of the Universe (Harvard University Press, Cambridge, 1989)
G. Gamow, The evolution of the Universe. Nature 162, 680 (1948). https://doi.org/10.1038/162680a0
R.A. Alpher, R.C. Herman, Evolution of the Universe. Nature 162, 774 (1948). https://doi.org/10.1038/162774b0
R.A. Alpher, R.C. Herman, On the relative abundance of the elements. Phys. Rev 74, 1737 (1948). https://doi.org/10.1103/physrev.74.1737
P.J.E. Peebles, Recombination of the primeval plasma. Astrophys. J 153, 1 (1968). https://doi.org/10.1086/149628
R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2020)
A.A. Penzias, R.W. Wilson, A Measurement of excess antenna temperature at 4080-Mc/. Astrophys. J 142, 419 (1965). https://doi.org/10.1086/148307
D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The Cosmic Microwave Background spectrum from the full COBE FIRAS data set. Astrophys. J 473, 576 (1996). https://doi.org/10.1086/178173, arXiv:astro-ph/9605054
N.J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, S. Sarkar, J. Colin, A test of the cosmological principle with quasars. Astrophys. J. Lett 908, L51 (2021). https://doi.org/10.3847/2041-8213/abdd40, arXiv:2009.14826
L. Perivolaropoulos, F. Skara, Challenges for\(\Lambda \)CDM: An update, arXiv:2105.05208
WMAP collaboration, Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20, arXiv:1212.5225
Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 641, A1 (2020) https://doi.org/10.1051/0004-6361/201833880. arXiv:1807.06205
H. Hui et al., BICEP Array: a multi-frequency degree-scale CMB polarimeter. https://doi.org/10.1117/12.2311725 Proc. SPIE Int. Soc. Opt. Eng10708, 1070807 (2018). arXiv:1808.00568
CMB-S4 collaboration, CMB-S4 Science Book, First Edition. arXiv:1610.02743
LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey. arXiv:2202.02773
NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins. arXiv:1902.10541
Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts. JCAP 02, 056 (2019). https://doi.org/10.1088/1475-7516/2019/02/056, arXiv:1808.07445
D.J. Fixsen, The Temperature of the Cosmic Microwave Background. Astrophys. J. 707, 916 (2009). https://doi.org/10.1088/0004-637X/707/2/916 arXiv: 0911.1955
Planck collaboration, Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910, arXiv:1807.06209
R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803 (1948). https://doi.org/10.1103/PhysRev.73.803
R.H. Cyburt, B.D. Fields, K.A. Olive, T.-H. Yeh, Big Bang Nucleosynthesis: 2015. Rev. Mod. Phys. 88, 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004, arXiv: 1505.01076
C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept. 754,1 (2018). https://doi.org/10.1016/j.physrep.2018.04.005, arXiv:1801.08023
B.D. Fields, The primordial lithium problem. Ann. Rev. Nucl. Part. Sci. 61, 47 (2011). https://doi.org/10.1146/annurev-nucl-102010-130445, arXiv: 1203.3551
V. Mossa et al., The baryon density of the Universe from an improved rate of deuterium burning. Nature 587, 210 (2020). https://doi.org/10.1038/s41586-020-2878-4
Particle Data Group collaboration, Review of Particle Physics. PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104
M. Archidiacono, E. Giusarma, S. Hannestad, O. Mena, Cosmic dark radiation and neutrinos. Adv. High Energy Phys. 2013, 191047 (2013). https://doi.org/10.1155/2013/191047, arXiv: 1307.0637
M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). https://doi.org/10.1103/PhysRevD.71.083502 arXiv: astro-ph/0408426
W.J. Percival, S. Cole, D.J. Eisenstein, R.C. Nichol, J.A. Peacock, A.C. Pope et al., Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS. Mon. Not. Roy. Astron. Soc. 381, 1053 (2007). https://doi.org/10.1111/j.1365-2966.2007.12268.x arXiv: 0705.3323
SDSS collaboration, Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample. Mon. Not. Roy. Astron. Soc. 401, 2148 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x, arXiv:0907.1660
Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499, arXiv: astro-ph/9805201
Supernova Cosmology Project collaboration, Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J 517, 565 (1999). https://doi.org/10.1086/307221, arXiv: astro-ph/9812133
eBOSS collaboration, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021). https://doi.org/10.1103/PhysRevD.103.083533, arXiv: 2007.08991
A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz 5, 32 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497
D. Bodeker, W. Buchmuller, Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys 93, 035004 (2021). https://doi.org/10.1103/RevModPhys.93.035004, arXiv: 2009.07294
P. Di Bari, On the origin of matter in the Universe. Prog. Part. Nucl. Phys. 122, 103913 (2022) https://doi.org/10.1016/j.ppnp.2021.103913, arXiv: 2107.13750
M. Fukugita, T. Yanagida, Baryogenesis Without Grand Unification. Phys. Lett. B 174, 45 (1986). https://doi.org/10.1016/0370-2693(86)91126-3
W. Buchmuller, R.D. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci 55, 311 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151558, arXiv: hep-ph/0502169
G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints. Phys. Rept 405, 279 (2005). https://doi.org/10.1016/j.physrep.2004.08.031, arXiv: hep-ph/0404175
J. Silk et al., Particle Dark Matter: Observations (Models and Searches. Cambridge University Press, Cambridge, 2010)
M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J 270, 365 (1983). https://doi.org/10.1086/161130
F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933). https://doi.org/10.1007/s10714-008-0707-4
F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J 86, 217 (1937). https://doi.org/10.1086/143864
V.C. Rubin, W.K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J 159, 379 (1970). https://doi.org/10.1086/150317
V.C. Rubin, N. Thonnard, W.K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J 238, 471 (1980). https://doi.org/10.1086/158003
W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett 85, 1158 (2000). https://doi.org/10.1103/PhysRevLett.85.1158 arXiv: astro-ph/0003365
B. Carr, F. Kuhnel, M. Sandstad, Primordial Black Holes as Dark Matter. Phys. Rev. D 94, 083504 (2016). https://doi.org/10.1103/PhysRevD.94.083504, arXiv: 1607.06077v4
S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz et al., Did LIGO detect dark matter?. Phys. Rev. Lett 116, 201301 (2016). https://doi.org/10.1103/PhysRevLett.116.201301, arXiv: 1603.00464
D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109 (2006). https://doi.org/10.1086/508162 arXiv:astro-ph/0608407
K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8, arXiv: 1205.3421
D. Huterer, D.L. Shafer, Dark energy two decades after: Observables, probes, consistency tests. Rept. Prog. Phys. 81, 016901 (2018). https://doi.org/10.1088/1361-6633/aa997e, arXiv: 1709.01091
S. Weinberg, Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett 59, 2607 (1987). https://doi.org/10.1103/PhysRevLett.59.2607
S. Weinberg, The Cosmological Constant Problem. Rev. Mod. Phys 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1
H.E.S. Velten, R.F. vom Marttens, W. Zimdahl, Aspects of the cosmological “coincidence problem”. Eur. Phys. J. C 74, 3160 (2014). https://doi.org/10.1140/epjc/s10052-014-3160-4 arXiv: 1410.2509
Y. Minami, E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett 125, 221301 (2020). https://doi.org/10.1103/PhysRevLett.125.221301, arXiv:2011.11254
P. Diego-Palazuelos et al., Cosmic Birefringence from Planck Data Release 4. (2022) arXiv:2201.07682
A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979)
A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 23, 347 (1981). https://doi.org/10.1103/PhysRevD.23.347
A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 108, 389 (1982). https://doi.org/10.1016/0370-2693(82)91219-9
D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686 (2011). https://doi.org/10.1142/9789814327183_0010, arXiv:0907.5424
D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 314, 1 (1999). https://doi.org/10.1016/S0370-1573(98)00128-8, arXiv: hep-ph/9807278
A. Albrecht, P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 48, 1220 (1982). https://doi.org/10.1103/PhysRevLett.48.1220
A.D. Linde, Chaotic Inflation. Phys. Lett. B 129, 177 (1983). https://doi.org/10.1016/0370-2693(83)90837-7
F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). https://doi.org/10.1016/j.physletb.2007.11.072, arXiv: 0710.3755
J. de Haro, L.A. Saló, A Review of Quintessential Inflation. Galaxies 9, 73 (2021) https://doi.org/10.3390/galaxies9040073, arXiv: 2108.11144
D. Baumann, L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, 5, 2015, https://doi.org/10.1017/CBO9781316105733, arXiv: 1404.2601
L. McAllister and E. Silverstein, String Cosmology: A Review. Gen. Rel. Grav 40, 565 (2008). https://doi.org/10.1007/s10714-007-0556-6 arXiv: 0710.2951
L. Susskind, The Anthropic landscape of string theory. arXiv:hep-th/0302219
A. Vilenkin, The Birth of Inflationary Universes. Phys. Rev. D 27, 2848 (1983). https://doi.org/10.1103/PhysRevD.27.2848
E. Palti, The Swampland: Introduction and Review. Fortsch. Phys 67, 1900037 (2019) https://doi.org/10.1002/prop.201900037, arXiv: 1903.06239
P. Agrawal, G. Obied, P.J. Steinhardt, C. Vafa, On the Cosmological Implications of the String Swampland. Phys. Lett. B 784, 271 (2018) https://doi.org/10.1016/j.physletb.2018.07.040 arXiv: 1806.09718
S.K. Garg, C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland. JHEP 11, 075 (2019). https://doi.org/10.1007/JHEP11(2019)075, arXiv: 1807.05193
R.H. Brandenberger, The Matter Bounce Alternative to Inflationary Cosmology, arXiv: 1206.4196
J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). https://doi.org/10.1103/PhysRevD.64.123522, arXiv: hep-th/0103239
T. Battefeld, S. Watson, String gas cosmology. Rev. Mod. Phys 78, 435 (2006). https://doi.org/10.1103/RevModPhys.78.435, arXiv: hep-th/0510022
M. Bojowald, Quantum cosmology: a review. Rept. Prog. Phys 78, 023901 (2015). https://doi.org/10.1088/0034-4885/78/2/023901, arXiv: 1501.04899
L. Kofman, A.D. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D56, 3258 (1997). https://doi.org/10.1103/PhysRevD.56.3258, arXiv: hep-ph/9704452
R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, arXiv:2006.16182
Y. Mambrini, Particles in the Dark Universe: A Student’s Guide to Particle Physics and Cosmology (Springer, Cham, 2021)
K. Schmitz, The\(B\!-\!L\)Phase Transition: Implications for Cosmology and Neutrinos, Ph.D. thesis, Hamburg U., (2012). arXiv: 1307.3887
KATRIN collaboration, New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, arXiv: 2202.04587
PTOLEMY collaboration, Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. JCAP 07, 047 (2019). https://doi.org/10.1088/1475-7516/2019/07/047, arXiv: 1902.05508
G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5, arXiv: hep-ph/9506380
C. Caprini, D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav 35, 163001 (2018). https://doi.org/10.1088/1361-6382/aac608 arXiv:1801.04268
S.R. Taylor, Nanohertz Gravitational Wave Astronomy (CRC Press, Boca Raton, 2021)
NANOGrav collaboration, The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett 905, L34 (2020). https://doi.org/10.3847/2041-8213/abd401, arXiv: 2009.04496
B. Goncharov et al., On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett 917, L19 (2021.) https://doi.org/10.3847/2041-8213/ac17f4, arXiv:2107.12112
S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon. Not. Roy. Astron. Soc 508, 4970 (2021). https://doi.org/10.1093/mnras/stab2833 arXiv: 2110.13184
J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic Gravitational Wave Background. Mon. Not. Roy. Astron. Soc 510 (2022). https://doi.org/10.1093/mnras/stab3418, arXiv: 2201.03980
S. Furlanetto, S.P. Oh, F. Briggs, Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe. Phys. Rept 433, 181 (2006). https://doi.org/10.1016/j.physrep.2006.08.002 arXiv:astro-ph/0608032
J.. Bowman, A.EE. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67 (2018). https://doi.org/10.1038/nature25792, arXiv: 1810.05912
S. Singh, J.N. T., R. Subrahmanyan, N.U. Shankar, B. S. Girish, A. Raghunathan et al., On the detection of a cosmic dawn signal in the radio background. arXiv:2112.06778
M.P. van Haarlem et al., LOFAR: The LOw-frequency ARray. Astron. Astrophys 556, A2 (2013). https://doi.org/10.1051/0004-6361/201220873. arXiv: 1305.3550
T.W. Shimwell et al., The LOFAR Two-metre Sky Survey – V. Second data release. arXiv:2202.11733
F.G. Mertens, B. Semelin, L.V.E. Koopmans, Exploring the Cosmic Dawn with NenuFAR, in Semaine de l’astrophysique française 2021, 9, 2021, arXiv:2109.10055
G. Mellema et al., Reionization and the Cosmic Dawn with the Square Kilometre Array. Exper. Astron 36, 235 (2013). https://doi.org/10.1007/s10686-013-9334-5, arXiv:1210.0197
J. P. Gardner et al., The James Webb Space Telescope. Space Sci. Rev 123, 485 (2006). https://doi.org/10.1007/s11214-006-8315-7 arXiv:astro-ph/0606175
R. Barkana, A. Loeb, In the beginning: The First sources of light and the reionization of the Universe. Phys. Rept 349, 125 (2001). https://doi.org/10.1016/S0370-1573(01)00019-9, arXiv: astro-ph/0010468
SDSS collaboration, Evidence for Reionization at \(z\sim 6\): Detection of a Gunn-Peterson trough in a \(z = 6.28\) Quasar. Astron. J 122. 2850 (2001), https://doi.org/10.1086/324231 arXiv: astro-ph/0108097
X.-H. Fan, M.A. Strauss, R.H. Becker, R.L. White, J.E. Gunn, G.R. Knapp et al., Constraining the evolution of the ionizing background and the epoch of reionization with \(z\sim 6\) quasars. 2. a sample of 19 quasars. Astron. J 132, 117 (2006). https://doi.org/10.1086/504836, arXiv: astro-ph/0512082
J.E. Gunn, B.A. Peterson, On the Density of Neutral Hydrogen in Intergalactic Space. Astrophys. J 142, 1633 (1965). https://doi.org/10.1086/148444
U. Seljak, A. Slosar, P. McDonald, Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints. JCAP 10, 014 (2006). https://doi.org/10.1088/1475-7516/2006/10/014 arXiv: astro-ph/0604335
J.R. Pritchard, A. Loeb, 21-cm cosmology. Rept. Prog. Phys 75, 086901 (2012). https://doi.org/10.1088/0034-4885/75/8/086901 arXiv: 1109.6012
CHIME collaboration, Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment. arXiv: 2202.01242
J.S. Bullock, M. Boylan-Kolchin, Small-Scale Challenges to the \(\Lambda \) CDM Paradigm. Ann. Rev. Astron. Astrophys. 55, 343 (2017). https://doi.org/10.1146/annurev-astro-091916-055313, arXiv:1707.04256
LSST Science, LSST Project collaboration, LSST Science Book, Version 2.0 arXiv: 0912.0201
R.K. Sachs, A.M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J 147, 73 (1967). https://doi.org/10.1007/s10714-007-0448-9
M.J. Rees, D.W. Sciama, Large scale Density Inhomogeneities in the Universe. Nature 217, 511 (1968). https://doi.org/10.1038/217511a0
P. Fosalba, E. Gaztanaga, F. Castander, Detection of the ISW and SZ effects from the CMB-galaxy correlation. Astrophys. J. Lett 597, L8 (2003). https://doi.org/10.1086/379848 arXiv: astro-ph/0307249
SDSS collaboration, Physical evidence for dark energy, arXiv: astro-ph/0307335
N.A. Maksimova, L.H. Garrison, D.J. Eisenstein, B. Hadzhiyska, S. Bose, T.P. Satterthwaite, AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations. Mon. Not. Roy. Astron. Soc 508, 4017 (2021). https://doi.org/10.1093/mnras/stab2484 arXiv: 2110.11398
M. Ntampaka et al., The Role of Machine Learning in the Next Decade of Cosmology. arXiv: 1902.10159
F. Villaescusa-Navarro et al., The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations. Astrophys. J915, 71 (2021). https://doi.org/10.3847/1538-4357/abf7ba arXiv: 2010.00619
F. Villaescusa-Navarro et al., The CAMELS project: public data release. arXiv: 2201.01300
M.S. Turner, The Road to Precision Cosmology, arXiv: 2201.04741
D.J. Schwarz, C.J. Copi, D. Huterer, G.D. Starkman, CMB Anomalies after Planck. Class. Quant. Grav 33, 184001 (2016). https://doi.org/10.1088/0264-9381/33/18/184001, arXiv: 1510.07929
C. Heymans et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astron. Astrophys A 646, 140 (2021). https://doi.org/10.1051/0004-6361/202039063arXiv: 2007.15632
KiDS collaboration, KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. A 645, 104 (2021). https://doi.org/10.1051/0004-6361/202039070, arXiv: 2007.15633
DES collaboration, Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105, 023520 (2022). https://doi.org/10.1103/PhysRevD.105.023520, arXiv: 2105.13549
L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe. Nat. Astron. 3, 891 (2019). https://doi.org/10.1038/s41550-019-0902-0. arXiv: 1907.10625
E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri et al., In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav 38, 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d arXiv: 2103.01183
A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv: 2112.04510
N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S.J. Witte, V. Poulin, J. Lesgourgues, The \(H_0\) Olympics: A fair ranking of proposed models. arXiv: 2107.10291
T. Eifler et al., Cosmology with the Roman Space Telescope – multiprobe strategies. Mon. Not. Roy. Astron. Soc. 507, 1746 (2021). https://doi.org/10.1093/mnras/stab1762 arXiv:2004.05271
L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21, 2 (2018). https://doi.org/10.1007/s41114-017-0010-3 arxiv: 1606.00180
K. Nandra et al., The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv: 1306.2307
TMT International Science Development Teams & TMT Science Advisory Committee collaboration, Thirty Meter Telescope Detailed Science Case: 2015. Res. Astron. Astrophys 15, 1945 (2015). https://doi.org/10.1088/1674-4527/15/12/001, arXiv:1505.01195
CTA Consortium collaboration, B.S. Acharya et al., Science with the Cherenkov Telescope Array. WSP, 11 (2018). https://doi.org/10.1142/10986, arXiv:1709.07997
J. Biteau, M. Meyer, Gamma-ray Cosmology and Tests of Fundamental Physics, arXiv:2202.00523
M. Moresco et al., Unveiling the Universe with Emerging Cosmological Probes, arXiv:2201.07241
P.-J. Wu, Y. Shao, S.-J. Jin, X. Zhang, A path to precision cosmology: Synergy between four promising late-universe cosmological probes, arXiv:2202.09726
D. Reitze et al., Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019). arXiv:1907.04833
M. Maggiore et al., Science case for the Einstein telescope. JCAP 03, 050 (2020). https://doi.org/10.1088/1475-7516/2020/03/050, arXiv:1912.02622
LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786
W.-R. Hu, Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 4, 685 (2017). https://doi.org/10.1093/nsr/nwx116
TianQin collaboration, TianQin: a space-borne gravitational wave detector. Class. Quant. Grav33, 035010 (2016) https://doi.org/10.1088/0264-9381/33/3/035010, arXiv:1512.02076
LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER collaboration, A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017). https://doi.org/10.1038/nature24471, arXiv:1710.05835
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Schmitz, K. (2022). Modern Cosmology, an Amuse-Gueule. In: Streit-Bianchi, M., Catapano, P., Galbiati, C., Magnani, E. (eds) Advances in Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-031-05625-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-05625-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05624-6
Online ISBN: 978-3-031-05625-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)