Nothing Special   »   [go: up one dir, main page]

Skip to main content

Modern Cosmology, an Amuse-Gueule

  • Chapter
  • First Online:
Advances in Cosmology

Abstract

This essay is a nontechnical primer for a broader audience, in which I paint a broad-brush picture of modern cosmology. I begin by reviewing the evidence for the big bang, including the expansion of our Universe, the cosmic microwave background, and the primordial abundances of the light elements. Next, I discuss how these and other cosmological observations can be well explained by means of the concordance model of cosmology, putting a particular emphasis on the composition of the cosmic energy budget in terms of visible matter, dark matter, and dark energy. This sets the stage for a short overview of the history of the Universe from the earliest moments of its existence all the way to the accelerated expansion at late times and beyond. Finally, I summarize the current status of the field, including the challenges it is currently facing such as the Hubble tension, and conclude with an outlook onto the bright future that awaits us in the coming years and decades. The text is complemented by an extensive bibliography serving as a guide for readers who wish to delve deeper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E.W. Kolb, M.S. Turner, The Early Universe (CRC Press, Boca Raton, 1994)

    Google Scholar 

  2. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2005)

    Book  MATH  Google Scholar 

  3. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    MATH  Google Scholar 

  4. S. Dodelson, F. Schmidt, Modern Cosmology, 2nd edn. (Academic, Amsterdam, 2020)

    Google Scholar 

  5. P.J.E. Peebles, Cosmology’s Century (Princeton University Press, Princeton, 2020)

    Book  MATH  Google Scholar 

  6. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman, San Francisco, 1973)

    Google Scholar 

  7. S.M. Carroll, Spacetime and Geometry (Cambridge University Press, Cambridge, 2019)

    Book  MATH  Google Scholar 

  8. A. Friedmann, Über die Krümmung des Raumes. Zeitschrift für Physik 10, 377 (1922). https://doi.org/10.1007/BF01332580

  9. R. Barnes, The Friedman-Lemaître-Robertson-Walker Metric: a centennial review, arXiv:2201.13120

  10. G. Lemaître, A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Annales Soc. Sci. Bruxelles A 47, 49 (1927). https://doi.org/10.1007/s10714-013-1548-3

  11. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci 15, 168 (1929). https://doi.org/10.1073/pnas.15.3.168

  12. E. Hubble, M.L. Humason, The velocity-distance relation among extra-galactic nebulae. Astrophys. J 74, 43 (1931). https://doi.org/10.1086/143323

  13. V. Slipher, The radial velocity of the Andromeda Nebula. Lowell Obs. Bull. 1, 56 (1913)

    ADS  Google Scholar 

  14. K. Lundmark, The determination of the curvature of space-time in de Sitter’s world. Mon. Not. Roy. Astron. Soc. 84, 747 (1924)

    Article  ADS  Google Scholar 

  15. E.R. Harrison, Darkness at Night: A Riddle of the Universe (Harvard University Press, Cambridge, 1989)

    Google Scholar 

  16. G. Gamow, The evolution of the Universe. Nature 162, 680 (1948). https://doi.org/10.1038/162680a0

  17. R.A. Alpher, R.C. Herman, Evolution of the Universe. Nature 162, 774 (1948). https://doi.org/10.1038/162774b0

  18. R.A. Alpher, R.C. Herman, On the relative abundance of the elements. Phys. Rev 74, 1737 (1948). https://doi.org/10.1103/physrev.74.1737

  19. P.J.E. Peebles, Recombination of the primeval plasma. Astrophys. J 153, 1 (1968). https://doi.org/10.1086/149628

  20. R. Durrer, The Cosmic Microwave Background (Cambridge University Press, Cambridge, 2020)

    Book  MATH  Google Scholar 

  21. A.A. Penzias, R.W. Wilson, A Measurement of excess antenna temperature at 4080-Mc/. Astrophys. J 142, 419 (1965). https://doi.org/10.1086/148307

  22. D.J. Fixsen, E.S. Cheng, J.M. Gales, J.C. Mather, R.A. Shafer, E.L. Wright, The Cosmic Microwave Background spectrum from the full COBE FIRAS data set. Astrophys. J 473, 576 (1996). https://doi.org/10.1086/178173, arXiv:astro-ph/9605054

  23. N.J. Secrest, S. von Hausegger, M. Rameez, R. Mohayaee, S. Sarkar, J. Colin, A test of the cosmological principle with quasars. Astrophys. J. Lett 908, L51 (2021). https://doi.org/10.3847/2041-8213/abdd40, arXiv:2009.14826

  24. L. Perivolaropoulos, F. Skara, Challenges for\(\Lambda \)CDM: An update, arXiv:2105.05208

  25. WMAP collaboration, Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl 208, 20 (2013). https://doi.org/10.1088/0067-0049/208/2/20, arXiv:1212.5225

  26. Planck collaboration, Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 641, A1 (2020) https://doi.org/10.1051/0004-6361/201833880. arXiv:1807.06205

  27. H. Hui et al., BICEP Array: a multi-frequency degree-scale CMB polarimeter. https://doi.org/10.1117/12.2311725 Proc. SPIE Int. Soc. Opt. Eng10708, 1070807 (2018). arXiv:1808.00568

  28. CMB-S4 collaboration, CMB-S4 Science Book, First Edition. arXiv:1610.02743

  29. LiteBIRD collaboration, Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey. arXiv:2202.02773

  30. NASA PICO collaboration, PICO: Probe of Inflation and Cosmic Origins. arXiv:1902.10541

  31. Simons Observatory collaboration, The Simons Observatory: Science goals and forecasts. JCAP 02, 056 (2019). https://doi.org/10.1088/1475-7516/2019/02/056, arXiv:1808.07445

  32. D.J. Fixsen, The Temperature of the Cosmic Microwave Background. Astrophys. J. 707, 916 (2009). https://doi.org/10.1088/0004-637X/707/2/916 arXiv: 0911.1955

  33. Planck collaboration, Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 641, A6 (2020). https://doi.org/10.1051/0004-6361/201833910, arXiv:1807.06209

  34. R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803 (1948). https://doi.org/10.1103/PhysRev.73.803

  35. R.H. Cyburt, B.D. Fields, K.A. Olive, T.-H. Yeh, Big Bang Nucleosynthesis: 2015. Rev. Mod. Phys. 88, 015004 (2016). https://doi.org/10.1103/RevModPhys.88.015004, arXiv: 1505.01076

  36. C. Pitrou, A. Coc, J.-P. Uzan, E. Vangioni, Precision big bang nucleosynthesis with improved Helium-4 predictions. Phys. Rept. 754,1 (2018). https://doi.org/10.1016/j.physrep.2018.04.005, arXiv:1801.08023

  37. B.D. Fields, The primordial lithium problem. Ann. Rev. Nucl. Part. Sci. 61, 47 (2011). https://doi.org/10.1146/annurev-nucl-102010-130445, arXiv: 1203.3551

  38. V. Mossa et al., The baryon density of the Universe from an improved rate of deuterium burning. Nature 587, 210 (2020). https://doi.org/10.1038/s41586-020-2878-4

    Article  ADS  Google Scholar 

  39. Particle Data Group collaboration, Review of Particle Physics. PTEP 2020, 083C01 (2020). https://doi.org/10.1093/ptep/ptaa104

  40. M. Archidiacono, E. Giusarma, S. Hannestad, O. Mena, Cosmic dark radiation and neutrinos. Adv. High Energy Phys. 2013, 191047 (2013). https://doi.org/10.1155/2013/191047, arXiv: 1307.0637

  41. M. Kawasaki, K. Kohri, T. Moroi, Big-Bang nucleosynthesis and hadronic decay of long-lived massive particles. Phys. Rev. D 71, 083502 (2005). https://doi.org/10.1103/PhysRevD.71.083502 arXiv: astro-ph/0408426

  42. W.J. Percival, S. Cole, D.J. Eisenstein, R.C. Nichol, J.A. Peacock, A.C. Pope et al., Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS. Mon. Not. Roy. Astron. Soc. 381, 1053 (2007). https://doi.org/10.1111/j.1365-2966.2007.12268.x arXiv: 0705.3323

  43. SDSS collaboration, Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample. Mon. Not. Roy. Astron. Soc. 401, 2148 (2010). https://doi.org/10.1111/j.1365-2966.2009.15812.x, arXiv:0907.1660

  44. Supernova Search Team collaboration, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998). https://doi.org/10.1086/300499, arXiv: astro-ph/9805201

  45. Supernova Cosmology Project collaboration, Measurements of \(\Omega \) and \(\Lambda \) from 42 high redshift supernovae. Astrophys. J 517, 565 (1999). https://doi.org/10.1086/307221, arXiv: astro-ph/9812133

  46. eBOSS collaboration, Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Cosmological implications from two decades of spectroscopic surveys at the Apache Point Observatory. Phys. Rev. D 103, 083533 (2021). https://doi.org/10.1103/PhysRevD.103.083533, arXiv: 2007.08991

  47. A.D. Sakharov, Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz 5, 32 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497

  48. D. Bodeker, W. Buchmuller, Baryogenesis from the weak scale to the grand unification scale. Rev. Mod. Phys 93, 035004 (2021). https://doi.org/10.1103/RevModPhys.93.035004, arXiv: 2009.07294

  49. P. Di Bari, On the origin of matter in the Universe. Prog. Part. Nucl. Phys. 122, 103913 (2022) https://doi.org/10.1016/j.ppnp.2021.103913, arXiv: 2107.13750

  50. M. Fukugita, T. Yanagida, Baryogenesis Without Grand Unification. Phys. Lett. B 174, 45 (1986). https://doi.org/10.1016/0370-2693(86)91126-3

  51. W. Buchmuller, R.D. Peccei, T. Yanagida, Leptogenesis as the origin of matter. Ann. Rev. Nucl. Part. Sci 55, 311 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151558, arXiv: hep-ph/0502169

  52. G. Bertone, D. Hooper, J. Silk, Particle dark matter: Evidence, candidates and constraints. Phys. Rept 405, 279 (2005). https://doi.org/10.1016/j.physrep.2004.08.031, arXiv: hep-ph/0404175

  53. J. Silk et al., Particle Dark Matter: Observations (Models and Searches. Cambridge University Press, Cambridge, 2010)

    Google Scholar 

  54. M. Milgrom, A Modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J 270, 365 (1983). https://doi.org/10.1086/161130

  55. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933). https://doi.org/10.1007/s10714-008-0707-4

  56. F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J 86, 217 (1937). https://doi.org/10.1086/143864

  57. V.C. Rubin, W.K. Ford, Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J 159, 379 (1970). https://doi.org/10.1086/150317

  58. V.C. Rubin, N. Thonnard, W.K. Ford, Jr., Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J 238, 471 (1980). https://doi.org/10.1086/158003

  59. W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter, Phys. Rev. Lett 85, 1158 (2000). https://doi.org/10.1103/PhysRevLett.85.1158 arXiv: astro-ph/0003365

  60. B. Carr, F. Kuhnel, M. Sandstad, Primordial Black Holes as Dark Matter. Phys. Rev. D 94, 083504 (2016). https://doi.org/10.1103/PhysRevD.94.083504, arXiv: 1607.06077v4

  61. S. Bird, I. Cholis, J.B. Muñoz, Y. Ali-Haïmoud, M. Kamionkowski, E.D. Kovetz et al., Did LIGO detect dark matter?. Phys. Rev. Lett 116, 201301 (2016). https://doi.org/10.1103/PhysRevLett.116.201301, arXiv: 1603.00464

  62. D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones et al., A direct empirical proof of the existence of dark matter. Astrophys. J. Lett. 648, L109 (2006). https://doi.org/10.1086/508162 arXiv:astro-ph/0608407

  63. K. Bamba, S. Capozziello, S. Nojiri and S.D. Odintsov, Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 342, 155 (2012). https://doi.org/10.1007/s10509-012-1181-8, arXiv: 1205.3421

  64. D. Huterer, D.L. Shafer, Dark energy two decades after: Observables, probes, consistency tests. Rept. Prog. Phys. 81, 016901 (2018). https://doi.org/10.1088/1361-6633/aa997e, arXiv: 1709.01091

  65. S. Weinberg, Anthropic Bound on the Cosmological Constant. Phys. Rev. Lett 59, 2607 (1987). https://doi.org/10.1103/PhysRevLett.59.2607

  66. S. Weinberg, The Cosmological Constant Problem. Rev. Mod. Phys 61, 1 (1989). https://doi.org/10.1103/RevModPhys.61.1

  67. H.E.S. Velten, R.F. vom Marttens, W. Zimdahl, Aspects of the cosmological “coincidence problem”. Eur. Phys. J. C 74, 3160 (2014). https://doi.org/10.1140/epjc/s10052-014-3160-4 arXiv: 1410.2509

  68. Y. Minami, E. Komatsu, New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett 125, 221301 (2020). https://doi.org/10.1103/PhysRevLett.125.221301, arXiv:2011.11254

  69. P. Diego-Palazuelos et al., Cosmic Birefringence from Planck Data Release 4. (2022) arXiv:2201.07682

  70. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682 (1979)

    ADS  Google Scholar 

  71. A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems. Phys. Rev. D 23, 347 (1981). https://doi.org/10.1103/PhysRevD.23.347

  72. A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems. Phys. Lett. B 108, 389 (1982). https://doi.org/10.1016/0370-2693(82)91219-9

  73. D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, pp. 523–686 (2011). https://doi.org/10.1142/9789814327183_0010, arXiv:0907.5424

  74. D.H. Lyth and A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 314, 1 (1999). https://doi.org/10.1016/S0370-1573(98)00128-8, arXiv: hep-ph/9807278

  75. A. Albrecht, P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Phys. Rev. Lett. 48, 1220 (1982). https://doi.org/10.1103/PhysRevLett.48.1220

  76. A.D. Linde, Chaotic Inflation. Phys. Lett. B 129, 177 (1983). https://doi.org/10.1016/0370-2693(83)90837-7

  77. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton. Phys. Lett. B 659, 703 (2008). https://doi.org/10.1016/j.physletb.2007.11.072, arXiv: 0710.3755

  78. J. de Haro, L.A. Saló, A Review of Quintessential Inflation. Galaxies 9, 73 (2021) https://doi.org/10.3390/galaxies9040073, arXiv: 2108.11144

  79. D. Baumann, L. McAllister, Inflation and String Theory, Cambridge Monographs on Mathematical Physics. Cambridge University Press, 5, 2015, https://doi.org/10.1017/CBO9781316105733, arXiv: 1404.2601

  80. L. McAllister and E. Silverstein, String Cosmology: A Review. Gen. Rel. Grav 40, 565 (2008). https://doi.org/10.1007/s10714-007-0556-6 arXiv: 0710.2951

  81. L. Susskind, The Anthropic landscape of string theory. arXiv:hep-th/0302219

  82. A. Vilenkin, The Birth of Inflationary Universes. Phys. Rev. D 27, 2848 (1983). https://doi.org/10.1103/PhysRevD.27.2848

  83. E. Palti, The Swampland: Introduction and Review. Fortsch. Phys 67, 1900037 (2019) https://doi.org/10.1002/prop.201900037, arXiv: 1903.06239

  84. P. Agrawal, G. Obied, P.J. Steinhardt, C. Vafa, On the Cosmological Implications of the String Swampland. Phys. Lett. B 784, 271 (2018) https://doi.org/10.1016/j.physletb.2018.07.040 arXiv: 1806.09718

  85. S.K. Garg, C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland. JHEP 11, 075 (2019). https://doi.org/10.1007/JHEP11(2019)075, arXiv: 1807.05193

  86. R.H. Brandenberger, The Matter Bounce Alternative to Inflationary Cosmology, arXiv: 1206.4196

  87. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, The Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 64, 123522 (2001). https://doi.org/10.1103/PhysRevD.64.123522, arXiv: hep-th/0103239

  88. T. Battefeld, S. Watson, String gas cosmology. Rev. Mod. Phys 78, 435 (2006). https://doi.org/10.1103/RevModPhys.78.435, arXiv: hep-th/0510022

  89. M. Bojowald, Quantum cosmology: a review. Rept. Prog. Phys 78, 023901 (2015). https://doi.org/10.1088/0034-4885/78/2/023901, arXiv: 1501.04899

  90. L. Kofman, A.D. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D56, 3258 (1997). https://doi.org/10.1103/PhysRevD.56.3258, arXiv: hep-ph/9704452

  91. R. Allahverdi et al., The First Three Seconds: a Review of Possible Expansion Histories of the Early Universe, arXiv:2006.16182

  92. Y. Mambrini, Particles in the Dark Universe: A Student’s Guide to Particle Physics and Cosmology (Springer, Cham, 2021)

    Book  Google Scholar 

  93. K. Schmitz, The\(B\!-\!L\)Phase Transition: Implications for Cosmology and Neutrinos, Ph.D. thesis, Hamburg U., (2012). arXiv: 1307.3887

  94. KATRIN collaboration, New Constraint on the Local Relic Neutrino Background Overdensity with the First KATRIN Data Runs, arXiv: 2202.04587

  95. PTOLEMY collaboration, Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case. JCAP 07, 047 (2019). https://doi.org/10.1088/1475-7516/2019/07/047, arXiv: 1902.05508

  96. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept 267, 195 (1996). https://doi.org/10.1016/0370-1573(95)00058-5, arXiv: hep-ph/9506380

  97. C. Caprini, D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves. Class. Quant. Grav 35, 163001 (2018). https://doi.org/10.1088/1361-6382/aac608 arXiv:1801.04268

  98. S.R. Taylor, Nanohertz Gravitational Wave Astronomy (CRC Press, Boca Raton, 2021)

    Book  Google Scholar 

  99. NANOGrav collaboration, The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background. Astrophys. J. Lett 905, L34 (2020). https://doi.org/10.3847/2041-8213/abd401, arXiv: 2009.04496

  100. B. Goncharov et al., On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array. Astrophys. J. Lett 917, L19 (2021.) https://doi.org/10.3847/2041-8213/ac17f4, arXiv:2107.12112

  101. S. Chen et al., Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: inferences in the stochastic gravitational-wave background search. Mon. Not. Roy. Astron. Soc 508, 4970 (2021). https://doi.org/10.1093/mnras/stab2833 arXiv: 2110.13184

  102. J. Antoniadis et al., The International Pulsar Timing Array second data release: Search for an isotropic Gravitational Wave Background. Mon. Not. Roy. Astron. Soc 510 (2022). https://doi.org/10.1093/mnras/stab3418, arXiv: 2201.03980

  103. S. Furlanetto, S.P. Oh, F. Briggs, Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe. Phys. Rept 433, 181 (2006). https://doi.org/10.1016/j.physrep.2006.08.002 arXiv:astro-ph/0608032

  104. J.. Bowman, A.EE. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67 (2018). https://doi.org/10.1038/nature25792, arXiv: 1810.05912

  105. S. Singh, J.N. T., R. Subrahmanyan, N.U. Shankar, B. S. Girish, A. Raghunathan et al., On the detection of a cosmic dawn signal in the radio background. arXiv:2112.06778

  106. M.P. van Haarlem et al., LOFAR: The LOw-frequency ARray. Astron. Astrophys 556, A2 (2013). https://doi.org/10.1051/0004-6361/201220873. arXiv: 1305.3550

  107. T.W. Shimwell et al., The LOFAR Two-metre Sky Survey – V. Second data release. arXiv:2202.11733

  108. F.G. Mertens, B. Semelin, L.V.E. Koopmans, Exploring the Cosmic Dawn with NenuFAR, in Semaine de l’astrophysique française 2021, 9, 2021, arXiv:2109.10055

  109. G. Mellema et al., Reionization and the Cosmic Dawn with the Square Kilometre Array. Exper. Astron 36, 235 (2013). https://doi.org/10.1007/s10686-013-9334-5, arXiv:1210.0197

  110. J. P. Gardner et al., The James Webb Space Telescope. Space Sci. Rev 123, 485 (2006). https://doi.org/10.1007/s11214-006-8315-7 arXiv:astro-ph/0606175

  111. R. Barkana, A. Loeb, In the beginning: The First sources of light and the reionization of the Universe. Phys. Rept 349, 125 (2001). https://doi.org/10.1016/S0370-1573(01)00019-9, arXiv: astro-ph/0010468

  112. SDSS collaboration, Evidence for Reionization at \(z\sim 6\): Detection of a Gunn-Peterson trough in a \(z = 6.28\) Quasar. Astron. J 122. 2850 (2001), https://doi.org/10.1086/324231 arXiv: astro-ph/0108097

  113. X.-H. Fan, M.A. Strauss, R.H. Becker, R.L. White, J.E. Gunn, G.R. Knapp et al., Constraining the evolution of the ionizing background and the epoch of reionization with \(z\sim 6\) quasars. 2. a sample of 19 quasars. Astron. J 132, 117 (2006). https://doi.org/10.1086/504836, arXiv: astro-ph/0512082

  114. J.E. Gunn, B.A. Peterson, On the Density of Neutral Hydrogen in Intergalactic Space. Astrophys. J 142, 1633 (1965). https://doi.org/10.1086/148444

  115. U. Seljak, A. Slosar, P. McDonald, Cosmological parameters from combining the Lyman-alpha forest with CMB, galaxy clustering and SN constraints. JCAP 10, 014 (2006). https://doi.org/10.1088/1475-7516/2006/10/014 arXiv: astro-ph/0604335

  116. J.R. Pritchard, A. Loeb, 21-cm cosmology. Rept. Prog. Phys 75, 086901 (2012). https://doi.org/10.1088/0034-4885/75/8/086901 arXiv: 1109.6012

  117. CHIME collaboration, Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment. arXiv: 2202.01242

  118. J.S. Bullock, M. Boylan-Kolchin, Small-Scale Challenges to the \(\Lambda \) CDM Paradigm. Ann. Rev. Astron. Astrophys. 55, 343 (2017). https://doi.org/10.1146/annurev-astro-091916-055313, arXiv:1707.04256

  119. LSST Science, LSST Project collaboration, LSST Science Book, Version 2.0 arXiv: 0912.0201

  120. R.K. Sachs, A.M. Wolfe, Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J 147, 73 (1967). https://doi.org/10.1007/s10714-007-0448-9

  121. M.J. Rees, D.W. Sciama, Large scale Density Inhomogeneities in the Universe. Nature 217, 511 (1968). https://doi.org/10.1038/217511a0

  122. P. Fosalba, E. Gaztanaga, F. Castander, Detection of the ISW and SZ effects from the CMB-galaxy correlation. Astrophys. J. Lett 597, L8 (2003). https://doi.org/10.1086/379848 arXiv: astro-ph/0307249

  123. SDSS collaboration, Physical evidence for dark energy, arXiv: astro-ph/0307335

  124. N.A. Maksimova, L.H. Garrison, D.J. Eisenstein, B. Hadzhiyska, S. Bose, T.P. Satterthwaite, AbacusSummit: a massive set of high-accuracy, high-resolution N-body simulations. Mon. Not. Roy. Astron. Soc 508, 4017 (2021). https://doi.org/10.1093/mnras/stab2484 arXiv: 2110.11398

  125. M. Ntampaka et al., The Role of Machine Learning in the Next Decade of Cosmology. arXiv: 1902.10159

  126. F. Villaescusa-Navarro et al., The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations. Astrophys. J915, 71 (2021). https://doi.org/10.3847/1538-4357/abf7ba arXiv: 2010.00619

  127. F. Villaescusa-Navarro et al., The CAMELS project: public data release. arXiv: 2201.01300

  128. M.S. Turner, The Road to Precision Cosmology, arXiv: 2201.04741

  129. D.J. Schwarz, C.J. Copi, D. Huterer, G.D. Starkman, CMB Anomalies after Planck. Class. Quant. Grav 33, 184001 (2016). https://doi.org/10.1088/0264-9381/33/18/184001, arXiv: 1510.07929

  130. C. Heymans et al., KiDS-1000 Cosmology: Multi-probe weak gravitational lensing and spectroscopic galaxy clustering constraints. Astron. Astrophys A 646, 140 (2021). https://doi.org/10.1051/0004-6361/202039063arXiv: 2007.15632

  131. KiDS collaboration, KiDS-1000 Cosmology: Cosmic shear constraints and comparison between two point statistics. Astron. Astrophys. A 645, 104 (2021). https://doi.org/10.1051/0004-6361/202039070, arXiv: 2007.15633

  132. DES collaboration, Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 105, 023520 (2022). https://doi.org/10.1103/PhysRevD.105.023520, arXiv: 2105.13549

  133. L. Verde, T. Treu and A. G. Riess, Tensions between the Early and the Late Universe. Nat. Astron. 3, 891 (2019). https://doi.org/10.1038/s41550-019-0902-0. arXiv: 1907.10625

  134. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri et al., In the realm of the Hubble tension—a review of solutions. Class. Quant. Grav 38, 153001 (2021). https://doi.org/10.1088/1361-6382/ac086d arXiv: 2103.01183

  135. A. G. Riess et al., A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km/s/Mpc Uncertainty from the Hubble Space Telescope and the SH0ES Team. arXiv: 2112.04510

  136. N. Schöneberg, G. Franco Abellán, A. Pérez Sánchez, S.J. Witte, V. Poulin, J. Lesgourgues, The \(H_0\) Olympics: A fair ranking of proposed models. arXiv: 2107.10291

  137. T. Eifler et al., Cosmology with the Roman Space Telescope – multiprobe strategies. Mon. Not. Roy. Astron. Soc. 507, 1746 (2021). https://doi.org/10.1093/mnras/stab1762 arXiv:2004.05271

  138. L. Amendola et al., Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21, 2 (2018). https://doi.org/10.1007/s41114-017-0010-3 arxiv: 1606.00180

  139. K. Nandra et al., The Hot and Energetic Universe: A White Paper presenting the science theme motivating the Athena+ mission. arXiv: 1306.2307

  140. TMT International Science Development Teams & TMT Science Advisory Committee collaboration, Thirty Meter Telescope Detailed Science Case: 2015. Res. Astron. Astrophys 15, 1945 (2015). https://doi.org/10.1088/1674-4527/15/12/001, arXiv:1505.01195

  141. CTA Consortium collaboration, B.S. Acharya et al., Science with the Cherenkov Telescope Array. WSP, 11 (2018). https://doi.org/10.1142/10986, arXiv:1709.07997

  142. J. Biteau, M. Meyer, Gamma-ray Cosmology and Tests of Fundamental Physics, arXiv:2202.00523

  143. M. Moresco et al., Unveiling the Universe with Emerging Cosmological Probes, arXiv:2201.07241

  144. P.-J. Wu, Y. Shao, S.-J. Jin, X. Zhang, A path to precision cosmology: Synergy between four promising late-universe cosmological probes, arXiv:2202.09726

  145. D. Reitze et al., Cosmic explorer: The U.S. contribution to gravitational-wave astronomy beyond LIGO. Bull. Am. Astron. Soc. 51, 035 (2019). arXiv:1907.04833

  146. M. Maggiore et al., Science case for the Einstein telescope. JCAP 03, 050 (2020). https://doi.org/10.1088/1475-7516/2020/03/050, arXiv:1912.02622

  147. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786

  148. W.-R. Hu, Y.-L. Wu, The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev. 4, 685 (2017). https://doi.org/10.1093/nsr/nwx116

  149. TianQin collaboration, TianQin: a space-borne gravitational wave detector. Class. Quant. Grav33, 035010 (2016) https://doi.org/10.1088/0264-9381/33/3/035010, arXiv:1512.02076

  150. LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER collaboration, A gravitational-wave standard siren measurement of the Hubble constant. Nature 551, 85 (2017). https://doi.org/10.1038/nature24471, arXiv:1710.05835

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Schmitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, K. (2022). Modern Cosmology, an Amuse-Gueule. In: Streit-Bianchi, M., Catapano, P., Galbiati, C., Magnani, E. (eds) Advances in Cosmology. Springer, Cham. https://doi.org/10.1007/978-3-031-05625-3_3

Download citation

Publish with us

Policies and ethics