Nothing Special   »   [go: up one dir, main page]

Skip to main content

SCIP-Jack: An Exact High Performance Solver for Steiner Tree Problems in Graphs and Related Problems

  • Conference paper
  • First Online:
Modeling, Simulation and Optimization of Complex Processes HPSC 2018

Abstract

The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-Jack has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-Jack is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-Jack and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

  2. 2.

    Winning team Track A: Yoichi Iwata, Takuto Shigemura (NII, Japan).

  3. 3.

    Winning team Track C: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique Villalobos Lpez, Carlos Segura Gonzlez (CIMAT, Mexico).

References

  1. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, Berlin (1972)

    Google Scholar 

  2. Leitner, M., Ljubic, I., Luipersbeck, M., Prossegger, M., Resch, M.: New Real-world Instances for the Steiner Tree Problem in Graphs. Technical report, ISOR, Uni Wien (2014)

    Google Scholar 

  3. Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree problems in graphs. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 285–325. Kluwer, Dordrech (2001)

    Google Scholar 

  4. Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: A node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017)

    Article  MathSciNet  Google Scholar 

  5. Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the Steiner problem in graphs. Math. Program. Comput. 10(1), 69–118 (2018)

    Article  MathSciNet  Google Scholar 

  6. Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack–a solver for STP and variants with parallelization extensions. Math. Program. Comput. 9(2), 231–296 (2017)

    Article  MathSciNet  Google Scholar 

  7. : PACE 2018. https://pacechallenge.wordpress.com/pace-2018 (2018)

  8. Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical Report 18–26, ZIB, Takustr. 7, 14195, Berlin (2018)

    Google Scholar 

  9. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)

    Google Scholar 

  10. Rosseti, I., de Aragão, M., Ribeiro, C., Uchoa, E., Werneck, R.: New benchmark instances for the Steiner problem in graphs. In: Extended Abstracts of the 4th Metaheuristics International Conference (MIC’2001), Porto, pp. 557–561 (2001)

    Google Scholar 

  11. Duin, C.: Steiner Problems in Graphs. Ph.D. thesis, University of Amsterdam (1993)

    Google Scholar 

  12. Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)

    Article  MathSciNet  Google Scholar 

  13. Daneshmand, S.V.: Algorithmic approaches to the Steiner problem in networks (2004)

    Google Scholar 

  14. Rehfeldt, D., Koch, T.: Combining NP-hard reduction techniques and strong heuristics in an exact algorithm for the maximum-weight connected subgraph problem. SIAM J. Optim. 29(1), 369–398 (2019)

    Google Scholar 

  15. Polzin, T., Vahdati Daneshmand, S.: A comparison of Steiner tree relaxations. Discrete Appl. Math. 112(1–3), 241–261 (2001)

    Article  MathSciNet  Google Scholar 

  16. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28, 271–287 (1984)

    Article  MathSciNet  Google Scholar 

  17. Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32, 207–232 (1998)

    Article  MathSciNet  Google Scholar 

  18. Polzin, T., Vahdati-Daneshmand, S.: The Steiner Tree Challenge: An updated Study. http://dimacs11.zib.de/downloads.html (2014)

  19. Polzin, T., Daneshmand, S.V.: Extending Reduction Techniques for the Steiner Tree Problem, pp. 795–807. Springer, Berlin, Heidelberg (2002)

    MATH  Google Scholar 

  20. Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. In: ISMB, pp. 223–231 (2008)

    Google Scholar 

  21. Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis, pp. 210–221. Springer International Publishing, Cham (2016)

    MATH  Google Scholar 

  22. Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conservation. In: Proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’10, pp. 102–116. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  23. Chen, C., Grauman, K.: Efficient activity detection with max-subgraph search. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, pp. 1274–1281 (2012)

    Google Scholar 

  24. Rehfeldt, D., Koch, T.: Transformations for the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to SAP. J. Comput. Math. 36(3), 459–468 (2018)

    Article  MathSciNet  Google Scholar 

  25. Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The Rooted Maximum Node-Weight Connected Subgraph Problem, pp. 300–315. Springer, Berlin, Heidelberg (2013)

    MATH  Google Scholar 

  26. Rehfeldt, D., Koch, T., Maher, S.: Reduction techniques for the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. Networks 73, 206–233 (2019)

    Article  MathSciNet  Google Scholar 

  27. 11th DIMACS Challenge.: http://dimacs11.zib.de/ (2018)

  28. Leitner, M., Ljubi, I., Luipersbeck, M., Sinnl, M.: A dual ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems. INFORMS J. Comput. 30(2), 402–420 (2018)

    Google Scholar 

  29. Burdakov, O., Doherty, P., Kvarnström, J.: Local search for hop-constrained directed Steiner tree problem with application to uav-based multi-target surveillance. In: Examining Robustness and Vulnerability of Networked Systems,pp. 26–50 (2014)

    Google Scholar 

  30. Pugliese, L.D.P., Gaudioso, M., Guerriero, F., Miglionico, G.: A lagrangean-based decomposition approach for the link constrained Steiner tree problem. Optim. Meth. Softw. 33(3), 650–670 (2018)

    Article  MathSciNet  Google Scholar 

  31. Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 3.2. Technical Report 15–60, ZIB, Takustr.7, 14195, Berlin (2016)

    Google Scholar 

  32. Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks (2001)

    Google Scholar 

  33. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)

    Article  MathSciNet  Google Scholar 

  34. Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’00, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 760–769 (2000)

    Google Scholar 

  35. Ljubi, I.: Exact and Memetic Algorithms for Two Network Design Problems. Ph.D. thesis, Vienna University of Technology (2004)

    Google Scholar 

  36. El-Kebir, M., Klau, G.W.: Solving the Maximum-Weight Connected Subgraph Problem to Optimality. Comput. Res. Repos. abs/1409.5308 (2014)

    Google Scholar 

  37. Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Program. 105(2–3), 427–449 (2006)

    Article  MathSciNet  Google Scholar 

  38. Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize collecting Steiner problem in graphs. Discrete Appl. Math. 141(1–3), 277–294 (2004)

    Article  MathSciNet  Google Scholar 

  39. Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. In: ISMB, pp. 233–240 (2002)

    Google Scholar 

  40. Rehfeldt, D., Koch, T.: Reduction-based exact solution of prize-collecting Steiner tree problems. Technical Report 18–55, ZIB, Takustr. 7, 14195, Berlin (2018)

    Google Scholar 

  41. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics. Elsevier Science, Amsterdam (1992)

    Google Scholar 

  42. Vo, S.: A survey on some generalizations of Steiner’s problem. In: 1st Balkan Conference on Operational Research Proceedings, 1, pp. 41–51 (1988)

    Google Scholar 

  43. Ferreira, C.E., de Oliveira Filho, F.M.: New reduction techniques for the group Steiner tree problem. SIAM J. Optim. 17(4), 1176–1188 (2006)

    Article  MathSciNet  Google Scholar 

  44. Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)

    Article  MathSciNet  Google Scholar 

  45. Warme, D., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: A computational study. In: Du, D.Z., Smith, J., Rubinstein, J., (eds.) Advances in Steiner Trees. Kluwer, New York, pp. 81–116 (2000)

    Google Scholar 

  46. Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design. Technical Report 00906, Institute for Discrete Mathematics (2000)

    Google Scholar 

  47. Emanet, N.: The Rectilinear Steiner Tree Problem. Lambert Academic Publishing (2010)

    Google Scholar 

  48. Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14(2), 255–265 (1966)

    Article  MathSciNet  Google Scholar 

  49. Snyder, T.L.: On the exact location of Steiner points in general dimension. SIAM J. Appl. Math. 21(1), 163–180 (1992)

    MathSciNet  MATH  Google Scholar 

  50. Chowdhury, S.A., Shackney, S., Heselmeyer-Haddad, K., Ried, T., Schffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29(13), 189–198 (2013)

    Article  Google Scholar 

  51. Liers, F., Martin, A., Pape, S.: Binary Steiner trees. Discrete Optim. 21(C), 85–117 (2016)

    Google Scholar 

  52. Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 770–779 (2016)

    Google Scholar 

  53. Rehfeldt, D., Koch, T.: Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems. Technical Report 17–57, ZIB, Takustr. 7, 14195, Berlin (2017)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their suggestions and corrections. This work was supported by the BMWi project Realisierung von Beschleunigungsstrategien der anwendungsorientierten Mathematik und Informatik für optimierende Energiesystemmodelle—BEAM-ME (fund number 03ET4023DE). The work for this article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (fund number 05M14ZAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rehfeldt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rehfeldt, D., Shinano, Y., Koch, T. (2021). SCIP-Jack: An Exact High Performance Solver for Steiner Tree Problems in Graphs and Related Problems. In: Bock, H.G., Jäger, W., Kostina, E., Phu, H.X. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-55240-4_10

Download citation

Publish with us

Policies and ethics