Abstract
The Steiner tree problem in graphs is one of the classic combinatorial optimization problems. Furthermore, many related problems, such as the rectilinear Steiner tree problem or the maximum-weight connected subgraph problem, have been described in the literature—with a wide range of practical applications. To embrace this wealth of problem classes, the solver SCIP-Jack has been developed as an exact framework for classic Steiner tree and 11 related problems. Moreover, the solver comes with both shared- and distributed memory extensions by means of the UG framework. Besides its versatility, SCIP-Jack is highly competitive for most of the 12 problem classes it can solve, as for instance demonstrated by its top ranking in the recent PACE 2018 Challenge. This article describes the current state of SCIP-Jack and provides up-to-date computational results, including several instances that can now be solved for the first time to optimality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Winning team Track A: Yoichi Iwata, Takuto Shigemura (NII, Japan).
- 3.
Winning team Track C: Emmanuel Romero Ruiz, Emmanuel Antonio Cuevas, Irwin Enrique Villalobos Lpez, Carlos Segura Gonzlez (CIMAT, Mexico).
References
Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, Berlin (1972)
Leitner, M., Ljubic, I., Luipersbeck, M., Prossegger, M., Resch, M.: New Real-world Instances for the Steiner Tree Problem in Graphs. Technical report, ISOR, Uni Wien (2014)
Koch, T., Martin, A., Voß, S.: SteinLib: An updated library on Steiner tree problems in graphs. In: Du, D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 285–325. Kluwer, Dordrech (2001)
Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl, M.: Thinning out Steiner trees: A node-based model for uniform edge costs. Math. Program. Comput. 9(2), 203–229 (2017)
Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the Steiner problem in graphs. Math. Program. Comput. 10(1), 69–118 (2018)
Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack–a solver for STP and variants with parallelization extensions. Math. Program. Comput. 9(2), 231–296 (2017)
: PACE 2018. https://pacechallenge.wordpress.com/pace-2018 (2018)
Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Lübbecke, M.E., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Schubert, C., Serrano, F., Shinano, Y., Viernickel, J.M., Walter, M., Wegscheider, F., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 6.0. Technical Report 18–26, ZIB, Takustr. 7, 14195, Berlin (2018)
Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin (2007)
Rosseti, I., de Aragão, M., Ribeiro, C., Uchoa, E., Werneck, R.: New benchmark instances for the Steiner problem in graphs. In: Extended Abstracts of the 4th Metaheuristics International Conference (MIC’2001), Porto, pp. 557–561 (2001)
Duin, C.: Steiner Problems in Graphs. Ph.D. thesis, University of Amsterdam (1993)
Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in networks. Discrete Appl. Math. 112(1–3), 263–300 (2001)
Daneshmand, S.V.: Algorithmic approaches to the Steiner problem in networks (2004)
Rehfeldt, D., Koch, T.: Combining NP-hard reduction techniques and strong heuristics in an exact algorithm for the maximum-weight connected subgraph problem. SIAM J. Optim. 29(1), 369–398 (2019)
Polzin, T., Vahdati Daneshmand, S.: A comparison of Steiner tree relaxations. Discrete Appl. Math. 112(1–3), 241–261 (2001)
Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28, 271–287 (1984)
Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32, 207–232 (1998)
Polzin, T., Vahdati-Daneshmand, S.: The Steiner Tree Challenge: An updated Study. http://dimacs11.zib.de/downloads.html (2014)
Polzin, T., Daneshmand, S.V.: Extending Reduction Techniques for the Steiner Tree Problem, pp. 795–807. Springer, Berlin, Heidelberg (2002)
Dittrich, M.T., Klau, G.W., Rosenwald, A., Dandekar, T., Müller, T.: Identifying functional modules in protein-protein interaction networks: an integrated exact approach. In: ISMB, pp. 223–231 (2008)
Loboda, A.A., Artyomov, M.N., Sergushichev, A.A.: Solving Generalized Maximum-Weight Connected Subgraph Problem for Network Enrichment Analysis, pp. 210–221. Springer International Publishing, Cham (2016)
Dilkina, B., Gomes, C.P.: Solving connected subgraph problems in wildlife conservation. In: Proceedings of the 7th International Conference on Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, CPAIOR’10, pp. 102–116. Springer, Berlin, Heidelberg (2010)
Chen, C., Grauman, K.: Efficient activity detection with max-subgraph search. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16–21, 2012, pp. 1274–1281 (2012)
Rehfeldt, D., Koch, T.: Transformations for the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem to SAP. J. Comput. Math. 36(3), 459–468 (2018)
Álvarez-Miranda, E., Ljubić, I., Mutzel, P.: The Rooted Maximum Node-Weight Connected Subgraph Problem, pp. 300–315. Springer, Berlin, Heidelberg (2013)
Rehfeldt, D., Koch, T., Maher, S.: Reduction techniques for the prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. Networks 73, 206–233 (2019)
11th DIMACS Challenge.: http://dimacs11.zib.de/ (2018)
Leitner, M., Ljubi, I., Luipersbeck, M., Sinnl, M.: A dual ascent-based branch-and-bound framework for the prize-collecting Steiner tree and related problems. INFORMS J. Comput. 30(2), 402–420 (2018)
Burdakov, O., Doherty, P., Kvarnström, J.: Local search for hop-constrained directed Steiner tree problem with application to uav-based multi-target surveillance. In: Examining Robustness and Vulnerability of Networked Systems,pp. 26–50 (2014)
Pugliese, L.D.P., Gaudioso, M., Guerriero, F., Miglionico, G.: A lagrangean-based decomposition approach for the link constrained Steiner tree problem. Optim. Meth. Softw. 33(3), 650–670 (2018)
Gamrath, G., Fischer, T., Gally, T., Gleixner, A.M., Hendel, G., Koch, T., Maher, S.J., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schenker, S., Schwarz, R., Serrano, F., Shinano, Y., Vigerske, S., Weninger, D., Winkler, M., Witt, J.T., Witzig, J.: The SCIP Optimization Suite 3.2. Technical Report 15–60, ZIB, Takustr.7, 14195, Berlin (2016)
Canuto, S.A., Resende, M.G.C., Ribeiro, C.C.: Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks (2001)
Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamson, D.P.: A note on the prize collecting traveling salesman problem. Math. Program. 59, 413–420 (1993)
Johnson, D.S., Minkoff, M., Phillips, S.: The prize collecting steiner tree problem: theory and practice. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’00, Philadelphia, PA, USA, Society for Industrial and Applied Mathematics, pp. 760–769 (2000)
Ljubi, I.: Exact and Memetic Algorithms for Two Network Design Problems. Ph.D. thesis, Vienna University of Technology (2004)
El-Kebir, M., Klau, G.W.: Solving the Maximum-Weight Connected Subgraph Problem to Optimality. Comput. Res. Repos. abs/1409.5308 (2014)
Ljubic, I., Weiskircher, R., Pferschy, U., Klau, G.W., Mutzel, P., Fischetti, M.: An algorithmic framework for the exact solution of the prize-collecting steiner tree problem. Math. Program. 105(2–3), 427–449 (2006)
Lucena, A., Resende, M.G.C.: Strong lower bounds for the prize collecting Steiner problem in graphs. Discrete Appl. Math. 141(1–3), 277–294 (2004)
Ideker, T., Ozier, O., Schwikowski, B., Siegel, A.F.: Discovering regulatory and signalling circuits in molecular interaction networks. In: ISMB, pp. 233–240 (2002)
Rehfeldt, D., Koch, T.: Reduction-based exact solution of prize-collecting Steiner tree problems. Technical Report 18–55, ZIB, Takustr. 7, 14195, Berlin (2018)
Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics. Elsevier Science, Amsterdam (1992)
Vo, S.: A survey on some generalizations of Steiner’s problem. In: 1st Balkan Conference on Operational Research Proceedings, 1, pp. 41–51 (1988)
Ferreira, C.E., de Oliveira Filho, F.M.: New reduction techniques for the group Steiner tree problem. SIAM J. Optim. 17(4), 1176–1188 (2006)
Garey, M., Johnson, D.: The rectilinear Steiner tree problem is NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)
Warme, D., Winter, P., Zachariasen, M.: Exact algorithms for plane Steiner tree problems: A computational study. In: Du, D.Z., Smith, J., Rubinstein, J., (eds.) Advances in Steiner Trees. Kluwer, New York, pp. 81–116 (2000)
Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design. Technical Report 00906, Institute for Discrete Mathematics (2000)
Emanet, N.: The Rectilinear Steiner Tree Problem. Lambert Academic Publishing (2010)
Hanan, M.: On Steiner’s problem with rectilinear distance. SIAM J. Appl. Math. 14(2), 255–265 (1966)
Snyder, T.L.: On the exact location of Steiner points in general dimension. SIAM J. Appl. Math. 21(1), 163–180 (1992)
Chowdhury, S.A., Shackney, S., Heselmeyer-Haddad, K., Ried, T., Schffer, A.A., Schwartz, R.: Phylogenetic analysis of multiprobe fluorescence in situ hybridization data from tumor cell populations. Bioinformatics 29(13), 189–198 (2013)
Liers, F., Martin, A., Pape, S.: Binary Steiner trees. Discrete Optim. 21(C), 85–117 (2016)
Shinano, Y., Achterberg, T., Berthold, T., Heinz, S., Koch, T., Winkler, M.: Solving Open MIP Instances with ParaSCIP on Supercomputers Using up to 80,000 Cores. In: 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 770–779 (2016)
Rehfeldt, D., Koch, T.: Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems. Technical Report 17–57, ZIB, Takustr. 7, 14195, Berlin (2017)
Acknowledgements
The authors would like to thank the anonymous reviewers for their suggestions and corrections. This work was supported by the BMWi project Realisierung von Beschleunigungsstrategien der anwendungsorientierten Mathematik und Informatik für optimierende Energiesystemmodelle—BEAM-ME (fund number 03ET4023DE). The work for this article has been conducted within the Research Campus MODAL funded by the German Federal Ministry of Education and Research (fund number 05M14ZAM).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Rehfeldt, D., Shinano, Y., Koch, T. (2021). SCIP-Jack: An Exact High Performance Solver for Steiner Tree Problems in Graphs and Related Problems. In: Bock, H.G., Jäger, W., Kostina, E., Phu, H.X. (eds) Modeling, Simulation and Optimization of Complex Processes HPSC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-55240-4_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-55240-4_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-55239-8
Online ISBN: 978-3-030-55240-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)