Abstract
CPU-intensive engineering problems such as networks of gas pipelines can be modelled as dynamical or quasi-static systems. These dynamical systems represent a map, depending on a set of control parameters, from an input signal to an output signal. In order to reduce the computational cost, surrogates based on linear combinations of translates of radial functions are a popular choice for a wide range of applications. Model order reduction, on the other hand, is an approach that takes the principal structure of the equations into account to construct low-dimensional approximations to the problem. We give an introductory survey of both methods, discuss their application to gas transport problems and compare both methods by means of a simple test case from industrial practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)
Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. 339(9), 667–672 (2004). doi:10.1016/j.crma.2004.08.006
Benner, P., Mehrmann, V., Sorensen, D.: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin (2005)
Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002). doi:10.1023/A:1014584220418
Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle–Matérn and polyharmonic kernels. Adv. Comput. Math. (2012). doi:10.1007/s10444-012-9277-9
Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)
Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). doi:10.1137/090766498
Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. ZIB Report ZR-03-46, Konrad-Zuse-Zentrum fuer Informationstechnik (2003)
Fasshauer, G.E.: Meshfree Approximation Methods with Matlab (with CD-ROM). World Scientific, Singapore (2007)
Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004). doi:10.1016/j.camwa.2003.08.010
Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters. Comput. Math. Appl., 379–398 (2006)
Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi:10.1137/09076756X
Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010). doi:10.1002/mma.1197
Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/
Kansa, E., Carlson, R.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24(12), 99–120 (1992). doi:10.1016/0898-1221(92)90174-G
LIWACOM Informationstechnik GmbH, Simone research group, Essen: Simone Software: Gleichungen und Methoden (2004)
Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011). doi:10.1016/j.cam.2011.05.021
Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx. 12(3), 331–340 (1996). doi:10.1007/BF02433047
Schaback, R.: Native Hilbert spaces for radial basis functions I. In: New Developments in Approximation Theory. International Series of Numerical Mathematics, vol. 132, pp. 255–282. Birkhäuser, Basel (1997)
Scheuerer, M., Schaback, R., Schlather, M., Feld, I.N., et al.: Interpolation of spatial data—a stochastic or a deterministic problem. Preprint, Universität Göttingen (2011). http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf
Schilders, W., van der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Springer, Berlin (2008)
Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I–III. Q. Appl. Math. 45(3), 561–590 (1987)
Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). doi:10.1016/j.cam.2006.04.018
Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T. (2013). Computing Surrogates for Gas Network Simulation Using Model Order Reduction. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_9
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7551-4_9
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7550-7
Online ISBN: 978-1-4614-7551-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)