Nothing Special   »   [go: up one dir, main page]

Skip to main content

Computing Surrogates for Gas Network Simulation Using Model Order Reduction

  • Chapter
Surrogate-Based Modeling and Optimization

Abstract

CPU-intensive engineering problems such as networks of gas pipelines can be modelled as dynamical or quasi-static systems. These dynamical systems represent a map, depending on a set of control parameters, from an input signal to an output signal. In order to reduce the computational cost, surrogates based on linear combinations of translates of radial functions are a popular choice for a wide range of applications. Model order reduction, on the other hand, is an approach that takes the principal structure of the equations into account to construct low-dimensional approximations to the problem. We give an introductory survey of both methods, discuss their application to gas transport problems and compare both methods by means of a simple test case from industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  2. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. 339(9), 667–672 (2004). doi:10.1016/j.crma.2004.08.006

    Article  MathSciNet  MATH  Google Scholar 

  3. Benner, P., Mehrmann, V., Sorensen, D.: Dimension Reduction of Large-Scale Systems. Lecture Notes in Computational Science and Engineering, vol. 45. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  4. Bozzini, M., Lenarduzzi, L., Schaback, R.: Adaptive interpolation by scaled multiquadrics. Adv. Comput. Math. 16(4), 375–387 (2002). doi:10.1023/A:1014584220418

    Article  MathSciNet  MATH  Google Scholar 

  5. Bozzini, M., Rossini, M., Schaback, R.: Generalized Whittle–Matérn and polyharmonic kernels. Adv. Comput. Math. (2012). doi:10.1007/s10444-012-9277-9

    Google Scholar 

  6. Buhmann, M.D.: Radial Basis Functions: Theory and Implementations. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  7. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010). doi:10.1137/090766498

    Article  MathSciNet  MATH  Google Scholar 

  8. Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. ZIB Report ZR-03-46, Konrad-Zuse-Zentrum fuer Informationstechnik (2003)

    Google Scholar 

  9. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab (with CD-ROM). World Scientific, Singapore (2007)

    MATH  Google Scholar 

  10. Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48(5–6), 853–867 (2004). doi:10.1016/j.camwa.2003.08.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Fornberg, B., Zuev, J.: The Runge phenomenon and spatially variable shape parameters. Comput. Math. Appl., 379–398 (2006)

    Google Scholar 

  12. Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869–892 (2011). doi:10.1137/09076756X

    Article  MathSciNet  MATH  Google Scholar 

  13. Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33(7), 845–855 (2010). doi:10.1002/mma.1197

    MathSciNet  MATH  Google Scholar 

  14. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: open source scientific tools for Python (2001). http://www.scipy.org/

  15. Kansa, E., Carlson, R.: Improved accuracy of multiquadric interpolation using variable shape parameters. Comput. Math. Appl. 24(12), 99–120 (1992). doi:10.1016/0898-1221(92)90174-G

    Article  MathSciNet  MATH  Google Scholar 

  16. LIWACOM Informationstechnik GmbH, Simone research group, Essen: Simone Software: Gleichungen und Methoden (2004)

    Google Scholar 

  17. Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575–588 (2011). doi:10.1016/j.cam.2011.05.021

    Article  MathSciNet  MATH  Google Scholar 

  18. Schaback, R.: Approximation by radial basis functions with finitely many centers. Constr. Approx. 12(3), 331–340 (1996). doi:10.1007/BF02433047

    Article  MathSciNet  MATH  Google Scholar 

  19. Schaback, R.: Native Hilbert spaces for radial basis functions I. In: New Developments in Approximation Theory. International Series of Numerical Mathematics, vol. 132, pp. 255–282. Birkhäuser, Basel (1997)

    Google Scholar 

  20. Scheuerer, M., Schaback, R., Schlather, M., Feld, I.N., et al.: Interpolation of spatial data—a stochastic or a deterministic problem. Preprint, Universität Göttingen (2011). http://num.math.uni-goettingen.de/schaback/research/papers/IoSD.pdf

  21. Schilders, W., van der Vorst, H., Rommes, J.: Model Order Reduction: Theory, Research Aspects and Applications. Springer, Berlin (2008)

    Book  Google Scholar 

  22. Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I–III. Q. Appl. Math. 45(3), 561–590 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). doi:10.1016/j.cam.2006.04.018

    Article  MathSciNet  MATH  Google Scholar 

  24. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Grundel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grundel, S., Hornung, N., Klaassen, B., Benner, P., Clees, T. (2013). Computing Surrogates for Gas Network Simulation Using Model Order Reduction. In: Koziel, S., Leifsson, L. (eds) Surrogate-Based Modeling and Optimization. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7551-4_9

Download citation

Publish with us

Policies and ethics