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1 Introduction

This article presents a model of capital choice for insurance �rms with costly external

�nance in an oligopoly setting. Determining the appropriate levels of capital holding

and investment in risk management is a major component of insurers and reinsur-

ers' activities, as well as a prominent regulatory issue. Due to the trend towards

consolidation of the last two decades, insurance market are far from being perfectly

competitive. In the context of imperfect competition, �rms' price and capital de-

cisions can be expected to become strategic variables. This leads to consider the

question of capital regulation with a di�erent perspective. Price regulation is some-

thing di�cult to put in place on the insurance market except through discrimination

exclusion. However, in a market where capital choice and solvability are crucial

and where cycles linking prices and capital are observed empirically, it is useful to

understand how capital decisions are impacted by imperfect competition.

There are two fundamental reasons for an insurance �rm to invest in risk management

and costly capital holding. The �rst one is the concern for quality. The nature of

the insurance contract is essentially a promise to deliver indemnities ex-post in some

states of Nature in exchange for a premium paid in advance. The credibility of such

promise is a major preoccupation of policyholders. A contract with non-zero default

risk has a lower value for the policyholder than a fully credible contract, so consumers

have a lower propensity to pay for it. Hence pro�t-maximizing insurance �rms have a

rationale to reduce the probability of default when consumers are aware and sensitive

to it, by investing in risk management activities, and/or holding a su�cient level of

capital that plays the role of a bu�er stock. This aspect refers to the solvency issue

(Zanjani, 2002; Rees et al., 1999). The second explanation relies on direct state-

contingent costs that make the �rms' payo�s becoming non-linear and so justify the

use of risk management and capital holding strategies, even if shareholders-managers,

considered as the same entity, are risk neutral. These non-linearities may include

i. the presence of convex taxes on corporate earnings, ii. �nancial distress costs,

iii. costly external funds due to costly state veri�cation (Gollier, 2007; Froot et al.,

1993)1. These explanations are not mutually exclusive, and give so many reasons

for insurance and reinsurance �rms to reinsure themselves, hedge, manage risks and

participate in insurance pools (Froot, 2007). In a recent paper, Froot (2007) analyses

risk management decisions for an insurance �rm, as well as its capital budgeting and

structure decisions, illustrating the trade-o� between holding more internal costly

initial capital and limiting risk aversion thanks to a higher level of internal funds.

If such rationales for risk management and capital holding by insurers and reinsurers

are well understood (at least theoretically), less is known about how these decisions

operate in the strategic context of imperfect competition. This lack of interest may

1Note that there is also a theoretical explanation that, on the contrary, supports the assumption
of risk-loving behavior of �rms: limited liability, in a context of agency problems between creditors,
who bear the cost of distress if it occurs, and owners, who get the bene�ts as long as they exist,
but are protected by a limited liability constraint if the �rm goes bankrupt.



come from the fact that insurance markets are usually considered to be competitive.

Although this assumption is well-documented, there are also arguments in favour of

imperfect competition as a more appropriate framework in the cases of specialized

insurance companies (Nye and Ho�ander, 1987) and the reinsurance sector (Gron,

1990). Moreover, since the insurance premiums are partly determined by the prices

and capacities of reinsurance market, the degree of competition in the reinsurance

sector does matter for the insurance one. Intuitively, the introduction of imperfect

competition may have consequences on pricing and capital decisions: when �rms

compete strategically in an oligopolistic market, risk management decisions may

be distorted by strategic e�ects. These distortions may in turn a�ect insurance

supply decisions, that is which lines of risks to cover and at which unit price. More

capitalized �rms would be able to accept more risks, and so capital holding could

increase their market shares on lines of risks that are characterized by high aggregate

uncertainty.

The purpose of this paper is to study the endogenous choice of capital holding and

pricing decisions for an oligopoly of (re)insurance �rms that face costly external

�nance. We build on Froot et al. (1993), which provides one of the canonical ex-

planations for �rms' risk management based on the assumption that internal capital

is less costly than external capital. We consider a price competition setting similar

to Wambach (1999). Indeed argued by Rees et al. (1999), price competition seems

more natural than quantity competition if rationing the supply is di�cult once the

price of the product has been posted (Vives, 1999), as it is the case in the insurance

sector. In the model, the number of insurers is exogenous. Insurers cover a single line

of risk which is characterized by aggregate uncertainty, i.e. uncertainty on the level

of the aggregate expected loss2. This uncertainty may arise from correlated risks

across policyholders, a typical feature of natural disaster risks, such as earthquake,

drought etc. Alternatively, it may also be interpreted as knightian uncertainty; this

is typically characteristic of �new technological risks�, for which the probability dis-

tribution cannot be derived from past observations. In this framework, we analyze

the strategic choice of capital for insurance �rms. Under imperfect competition,

holding more capital reduces the cost of risk for �rms but has also consequences

on competition through the �rms' price-setting game. As in Wambach (1999), we

obtain a continuum of Nash equilibrium prices, allowing for positive oligopolistic

rents. Under decreasing absolute risk aversion assumption, we �nd that the choice

of capital is strategic for the �rms as playing safer on the capital market induces a

harsher behavior on the product market. We underline the importance of the cost of

capital in the insurance industry outcomes. Finally, we propose a di�erent approach

to the question of capital regulation, complementary to the classical quality argu-

ment (Plantin and Rochet, 2007): required levels of capital may have an impact on

2When risks are statistically independent across policyholders, risk management and capital
budgeting decisions are still an issue since the probability of default is never null, but it is clear
that the problem becomes more stringent when there is aggregate uncertainty about the expected
pro�t from a line of risk.
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competition prices, and thus be bene�cial in a social welfare perspective.

Related literature �. Polborn (1998) andWambach (1999) consider an oligopoly

of n �rms with risk-averse managers, producing a single output. Marginal cost is

constant but stochastic. Firms commit to the price of the output before the marginal

cost is revealed, and then serve the whole demand they face at the committed price,

which is typically the Bertrand assumption. Such assumptions appear to �t very

well with the insurance and reinsurance markets where the cost of a given line of

(re)insurance is not known with certainty at the time contracts are sold, i.e. the

production cycle is reversed. In such setting, they �nd that the Bertrand paradox

(Tirole, 1988) -i.e. the fact that at least two competitors are su�cient to restore

the competitive price outcome- can be resolved3 in the sense that there exists Nash

price equilibria above the expected marginal cost, which lead to strictly positive

oligopolistic rents. There are also multiple equilibria (Wambach, 1999) due to a

trade-o� between expected pro�t and risk for each of the competing �rms. Asplund

(2002) generalizes the analysis to complementary or substitute strategies and takes

into account the possible covariations across �rms' individual risks. He also notes

the importance of initial wealth and �xed cost on the resulting Nash equilibria when

�rms display decreasing absolute risk aversion. Duncan and Myers (2000) consider

the same kind of model but allow for free entry, so the number of insurers that

serve the market is endogenous and depends on their reservation utility, which is

assumed exogenous. Because of �rms' risk aversion in presence of catastrophic and

correlated risks, insurance supply that emerges at the equilibrium is rationed. Froot

and O'Connell (2008) also introduce imperfect competition in an oligopoly of n risk

averse insurers with correlated portfolios and a risk-averse representative reinsurer

that pools insurers' risks, in a context of Cournot competition. They suggest that

imperfect competition tends to reinforce the overpricing of correlated risks when

compared to the fair price.

Our paper can also be related to a strand of literature derived from Brander and

Lewis (1986), that analyzes the strategic value of debt emission for �rms in oligopoly

markets. In particular, the timing is similar, with two-periods models where �nancial

decisions are taken at stage 1 and productions decisions at stage 2. The strategic

value of debt holding depends on the type of uncertainty faced by the market -

demand or cost - and the type of competition (Wanzenried, 2003). We depart here

from this literature as we focus on the impact of risk aversion on the choice of ex-ante

equity capital, from the investor's point of view: risk aversion enhances the weight

of high cost states, rendering capital level a strategic choice as it modi�es the price

equilibria.

The paper is organized as follow: Section 2 lays out the competition game; Section 3

and 4 derives the results on the impact of capital holding on the competitive structure

3This issue is close to considering price competition with convex costs, as do Weibull (2006) and
Vives (1999). Both literature are closely linked.

3



of the market; Section 5 looks at the social welfare and capital regulation. Section 6

discusses these results in line with the insurance industry speci�cities and concludes.

2 The model

2.1 The oligopoly market

We consider an oligopoly of n insurance �rms, indexed by i = 1...n, that produce
the same non-di�erentiated single good qi that can be thought of as a quantity

of insurance coverage sold to a continuum of risk-averse insureds. The aggregate

demand for coverage is exogenous, non-stochastic, and de�ned by Q(p) when all

insurance companies charge the same price p. Q(p) is continuous, decreasing in p

and lim
p→+∞

Q(p) = 0.

Because of the inversion of the production cycle, insurance �rms do not know ex-

ante the exact cost of supplying such coverage4. Let us denote L̃i ∈ [0, Lmax] the
stochastic loss per unit of output (or coverage) qi sold by the �rm i. We note L̄i =
EL̃i. Cost uncertainty may be particularly relevant in (re)insurance markets where

individual risks exhibit positive correlations which is a typical feature of catastrophic

risks. Alternatively, cost uncertainty may also re�ect the imperfect knowledge of

the "true" probability distribution of the loss, due to a lack of data, a situation

that is typical of new technological risks, or natural disaster risks. Because of cost

uncertainty, the pro�t from exerting the insurance activity is stochastic. For a �rm

i and a given price p, let us de�ne π̃i(p, qi) as follows

π̃i(p, qi) = qi(p− L̃i) = qim̃i (1)

where m̃i = p − L̃i is the stochastic unit margin. When the insurance coverage is

fairly priced, i.e. p− L̄i = 0 and the insurance activity entails no transaction costs,

the �rm i's expected pro�t is equal to zero, as in the standard competitive model

with risk neutral insurers. If, due to market power, the per unit price is strictly above

the expected loss per unit, i.e. p− L̄i > 0, then increasing supply qi (via increasing

market-share) increases the expected pro�t of the �rm, but also makes pro�t riskier.

This is the fundamental trade-o� that will be at the heart of the following analysis.

To keep things simple, we will consider that the loss L̃ per unit of output is the same

for all insurance �rms. Whether they are correlated or not is not important in our

framework, since coverage is sold before the true realization of losses.

2.2 Firms' objectives

The managers are supposed to maximize the value of the �rm. Following Froot,

Scharfstein and Stein (Froot et al., 1993), such objective may lead to an apparent

4This cost can be approximated by the expected loss plus a loading factor that covers a set
of various transaction costs (administrative costs, ambiguity aversion, security margin and so on).
Even in situations where the law of large numbers applies well, the cost of a given insured risk
remains fundamentally stochastic.
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risk-averse behavior when external sources of �nance are more costly than internal

ones. Let us recall their model. The �rm faces a two-period investment and �nancing

choice. The investment requires an expenditure I and has a net return F (I) =
f(I) − I, where f is an increasing and concave function. This investment may be

�nanced through the �rm's internal assets w as well as through external capital

e acquired at a cost c(e). The problem for �rms is that there are dead weight

costs of raising such external �nance, due to several reasons including distress costs

and informational asymmetries as argued in Froot et al. (1993). Formally, these

dead weight costs are captured by the fact that c(.) is convex. The solution of the

investment/�nancing problem is given by

max
I
P (w) = F (I)− c(e) (2)

s.t. I = w + e

The value of the �rm, denoted P (w) is the maximand of the programme. By analogy

with the usual de�nition of the risk premium (Gollier, 2001), with the di�erence that

the function P (.) replaces the standard von Neumann-Morgenstern utility function

u(.), Let R(W0, x̃) be given by

EP (W0 + x̃) = P [W0 −R(W0, x̃)]

where W0 is the level of initial wealth and x̃ a zero mean risk . Here, the �rm i

is endowed with an initial level of capital wi. She covers an amount of risk qi of

uncertain loss L̃, at price p. Her �nal wealth is W̃ i = wi + (p − L̃)qi. We note

W̄ = EW̃ i. The 0-mean risk to which it is exposed is : (L̃− EL)qi. For notational
simplicity, we note the risk premium Ri(W̄ i, qi) and we have:

EP (W̃ i) = P [W̄ i −Ri(W̄ i, qi)] (3)

We make the following assumptions :

• (A1) ∂P
∂w ≥ 1 and ∂2P

∂w2 ≤ 0

• (A2) ∂Ri

∂W̄
≤ 0

• (A3) for m = 1 and n d
dpEP (wi + (p− L)Q(p)/m) ≥ 0

• (A4)The pro�t maximizing output of the �rms increases when the price increases.

The following comments are in order. (A1) follows from the concavity of f and

convexity of c. This is just a consequence of the envelop theorem (Froot et al.,

1993). It implies the risk averse behavior of �rms, and its corollary that managing,

sharing and/or reducing the risks on internal assets can increase their value. If this

internal capital is stochastic, the ex-ante value of the �rm, and so the objective to

maximize, is given by EP (w̃). Since P (.) is concave, it is clear that the pseudo risk

premium has similar characteristics than the standard risk premium. In particular,

Ri is increasing and convex in qi. (A2) is the standard decreasing absolute risk

aversion (DARA) hypothesis. (A3) states that demand is su�ciently inelastic.
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2.3 Timing of the game

We consider n �rms endowed with a level of initial capital wi0, which can be in-

terpreted as their past pro�ts. The market equilibrium is modelled as a subgame

perfect equilibrium (in short equilibrium) of the following two-stage game

• At stage 1: Firms choose a level of additional capital Ki by issuing new shares

(if Ki ≥ 0) or by buying them back (if Ki ≤ 0). Firm i's wealth becomes

wi1 = wi0 +Ki.

• At stage 2: Each �rm posts its own price and commits to sell any quantity at

this price.

At stage 1, �rms choose their additional capital level K by maximizing the expected

net value: P (wif ) − (1 + τ)Ki. The capital has an opportunity cost, τK, for the

investors where 0 ≤ τ . At stage 2, a price competition, in the same manner as in

Wambach (1999), takes place between the n value-maximizing �rms. Firms compete

on price before the true cost is revealed by Nature: the �rm with the lowest price

catch all the market, and must serve all the demand that it faces; if more than one

�rm set the same lowest price, the market is shared equally among them. Finally, the

state of Nature is realized: losses are revealed. The �rms realize their investments

choices, raising if needed additional ex-post external capital.

Figure 1: Timing of the events

The game is solved backward in the two following sections.

3 Stage 2: Price competition

At stage 2, �rms compete on price with the objective to maximize their expected

value EP i(w̃if ). The case of symmetric �rms is �rst characterized, results are then

extended to the case of �rms endowed with di�erent levels of internal capital.

3.1 Symmetric �rms

Suppose that at the beginning of stage 2, �rms have the same level of internal capital,

that is for all i, j, i 6= j, wi1 = wj1. The functions P i(.) are supposed identical and

will be by now denoted P (.). We have
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EP (w̃if ) = P
(
πi(p, qi)−R(wi1 + πi(p, qi), qi)

)
(4)

where πi(p, qi) = qi(p − L) is the expected pro�t of �rm i. p is a symmetric Nash

equilibrium if �rms can not increase their value by undercutting price. Formally

EP
(
wi1 + π̃i

(
p,
Q(p)
n

))
≥ EP

(
wi1 + π̃i(p,Q(p))

)
(5)

or, using the risk premium formulation

πi
(
p,
Q(p)
n

)
−R

(
wi1 + πi

(
p,
Q(p)
n

)
,
Q(p)
n

)
≥ πi

(
p,Q(p)

)
−R
(
wi1 + πi(p,Q(p)), Q(p)

)
(6)

Consider that �rms have an outside option that gives them an expected value equal

to V out ≥ 0, which is assumed exogenous.

De�nition 1. We note pout the price for which the �rms are indi�erent between

serving 1/nth of the market or their outside option V out

EP
(
wi1 + π̃i

(
pout,

Q(pout)
n

))
= V out (7)

The following proposition, extending Wambach (1999)'s characterizes the Nash equi-

libria of the price competition

Proposition 1. In the case of symmetric �rms, under (A1), (A3) and (A4)

a) there exists a continuum PNE = [pout, pN ] of Nash equilibrium prices p ∈ PNE,
where pN is de�ned by

EP
(
wi1 + π̃i

(
pN ,

Q(pN )
n

))
= E

(
wi1 + π̃i(pN , Q(pN ))

)
(8)

b) the maximum Nash price pN is higher than the competitive price, lower than the

maximum monopoly price when it exists, and provides a value of the �rm higher than

her outside option.

Proof : see appendix.

The fact that price competition across risk-averse �rms leads to multiple equilibria

has already been exhibited by Polborn (1998) and Wambach (1999). It has a strong

link with the standard price competition literature when �rms exhibit decreasing

returns to scale5. When price is higher than expected cost, cutting price increases

5This result has in fact an intuitive explanation: for some values of price, a slight price cut
allows a �rm to catch all the market, which increases its revenue. But at the same time the �rm
is committed to serve the whole demand (which is moreover slightly higher due to the price cut),
exposing it to higher values of marginal cost and so a higher average cost of production. For low
enough output price, catching the whole market could then reduce the value of the �rm.
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the expected pro�t of the �rm that makes a unilateral deviation, but also exposes

it to the increased cost of risk that arises from serving the whole market. For some

values of price, the cost for the �rms of being exposed to more risk can be greater

than the expected gain from catching the whole market. In the present case, to the

fundamental trade-o� between expected pro�t and risk exposure must be added a

wealth-e�ect term which comes from the fact that the cost of bearing risk itself is a

function of the value of expected pro�t.

This three-terms trade-o� can be represented graphically. To keep things simple,

let us consider the case of a perfectly inelastic demand equal to Q. Let si = qi/Q

denote the market share of �rm i. Serving more customers exposes the �rms to a

greater share of cost uncertainty, at an increasing rate. In Figure 2, both expected

pro�t and pseudo risk premium curves are drawn as a function of the market share

in the case in the case of two �rms and for two (not necessarily Nash equilibria)

prices: p0 (thin line) and p1 (thick line), with p0 < p1. There are essentially two

values of interest for the market share: Q/2 and Q. For a given price p, the expected

pro�t of �rm i, siQ(p − L), is a linear function of the market share. The certainty

equivalent of �rm's wealth is simply the di�erence between the expected pro�t and

the risk premium, which is represented by the vertical arrows. As a preliminary, let

us consider the e�ect of a price increase from p0 to p1. For all market shares, the

pro�ts will be higher for p1 than for p0. But the risk premium is lower because of

the wealth e�ect: a higher expected price leads to a higher expected pro�t, and so a

higher �nal wealth of the �rm. Under decreasing absolute risk aversion, this tends to

decrease the �rm's sensitivity to risk. Hence, for a given market share, an increase

in price tends to increase the di�erence between the expected pro�t and the risk

premium.

Let us identify the Nash Equilibrium prices. Start at price p1. At this price each �rm

has an incentive to slightly decreases its price in order to catch the whole market. The

price cut simultaneously decreases the slope of the expected pro�t line and increases

those of the risk premium, so the two curves are getting nearer, as a �scissor�closing

movement. As the increase in expected pro�t more than compensates the increase

in pseudo risk premium, price cutting is the optimal strategy. Symmetric �rms cut

prices up to a certain level. In our �gure, at p0, �rms' value are equal at Q/2 and Q.

If one �rm slightly cut its price, the increase in expected pro�t that it would get from

catching the whole market is inferior to the loss due to the increase in risk premium.

So when the indi�erence price, pN in our formal analysis, is attained, no �rm has an

incentive to cut its price anymore. It is graphically straightforward that this price

is not the single Nash Equilibrium. As long as �rms get as much as their outside

option, the �rms participate to the market. Every price between the outside option

price and the indi�erence price is a Nash equilibrium, since no �rm has neither an

incentive to slightly increase its price (its demand would be zero) nor to decrease it

(the subsequent increase in risk would decrease the value of the �rm).

To characterize how internal capital impacts the maximum Nash price, we consider

8



Figure 2: Characterization of equilibrium prices for symmetric risk-averse �rms competing

on price. - Case of inelastic demand.

here an assumption which is slightly stronger than DARA. Let us denote

∆R = R(wi1 + π̄(pN , Q(pN )), Q(pN ))−R(wi1 + π̄(pN ,
Q(pN )
n

),
Q(pN )
n

)

and assume that

• (A5) ∆R increases in w.

With DARA (A2) only, the global e�ect of a multiplicative risk on the risk premium

is ambiguous in general. This is link to a double e�ect: an increase of market share

corresponds to 1. an increase in endowment decreasing the risk premium through

the DARA hypothesis 2. an increase in risk, increasing the risk premium through

the risk aversion hypothesis. (A5) states that prices are in a region were the risk

e�ect is ampli�ed by the wealth e�ect: the more capitalised �rms are less reluctant

to serve higher demand -and hold more risk-. This assumption leads to the following

Lemma:

Lemma 1. For symmetric �rms, under assumptions (A1) to (A5), ∂p
N

∂w1
≤ 0

Proof : see appendix.

Thus when the level of �rms' internal capital is high, i.e. �rms are less risk averse, the

competitive pressure they can exert is then high, and leads to a lower the maximum

Nash price.
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3.2 Asymmetric �rms

Let us consider the asymmetric continuation equilibrium where �rms enter stage 2

with di�erent levels of capital. It is important to consider the asymmetric equilibrium

of stage 2 since capital is the strategic variable at the �rst stage, and we should be

able to describe how unilateral deviations modify the outcome of the game. We

consider the case of an oligopoly of �rms i = 1...n: wn1 > wi1 > w1
1. Under DARA,

di�erence in the level of available capital lead to di�erences in the degree of risk

aversion, which impact the price competition game. The less risk averse �rm is the

�rm with the higher initial capital, that is �rm n.

De�nition 2. We consider an oligopoly of n risk averse �rms. We note poutmax the

maximum of the prices for which the �rms are indi�erent between serving 1/nth of

the market or their outside option V out

poutmax = max
i=1..n

{
pouti : EP (wi1 + π̃i(p,Q(p)/n)) = V out

}
(9)

Hence we can state the following proposition, focusing on n-oligopoly prices, that is

the case where poutmax < pNmin

Proposition 2. In the case of asymmetric �rms, under (A1) to (A5), if poutmax <

pNmin:

a) There exists a continuum PNE = [poutmax, p
N
min] of Nash equilibrium prices p ∈ PNE

for the n-oligopoly, where pNmin is de�ned as

pNmin = min
i=1..n

{
pNi : EP (wi1 + π̃ii(p,Q(p)/n)) = EP (wi1 + π̃i(p,Q(p)))

}
(10)

b) The maximum Nash price pNmin corresponds to the indi�erence price for the less

risk averse �rm between serving the whole market and serving 1/nth of it. pNmin is

higher than the competitive price, lower than the maximum monopoly price when it

exists, and provides a value of the �rm higher than her outside option.

Proof : see appendix.

Note that in the case where poutmax > pNmin, the di�erence between the �rms initial

capital is such that the competitive pressure exerted by the less risk averse �rms i

leads to a situation where the more risk averse �rm can not a�ord to stay in the

market at such price. But the other �rms i can then still sustain the risk of all the

market.

An equilibrium can be reach with asymmetrically capitalised �rms. The less capi-

talised the �rm, the less oligopolistic rent it can extract. This leads to a situation

where the market is divided between less �rms. Other Nash equilibria may be ob-

tained in the case where poutmax < pNmin, with less than n �rms (see appendix).
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Figure 3: Characterization of equilibrium prices for DARA �rms with di�erent level
of capital competing on price - Case of inelastic demand - wj1 > wi1.

A graphical explanation may give the intuition of the proof. For a same level of

coverage of the market, the risk premium of �rm i Ri is higher than �rm j's risk

premium Rj . As in the symmetric case, the case of inelastic demand is considered.

As �rm i is more risk averse than �rm j, pNi > pNj . We focus on the case where

poutmax < pNmin. For all p > pNi , both �rms prefer serving the whole market and thus

may deviate from price to conquer it; pNi ≥ p > pNj �rm j prefers the whole market

and thus will lower the price to conquer it; if p = pNj , then �rm j is indi�erent

between serving the whole market or half of it, and �rm i prefers serving half of

it, thus pNj is a Nash equilibrium price. Thus, with a similar argument than in the

symmetric case, for pNj ≥ p ≥ poutmax there is a Nash equilibrium. Figure 3 illustrates

this case. Both �rms share the same expected pro�ts. The risk premium curves

correspond for each �rm to the risk premium value for their indi�erence prices. As

�rm i's risk premium curves is always higher than �rm j's. We can graphically see

that the indi�erence price for �rm i is higher than for �rm j. Thus, we have shown

that in the case of a duopoly of asymmetric DARA �rms, there exists a continuum

of Nash equilibrium prices p. The higher Nash equilibrium price pNj corresponds to

the indi�erence price for the less risk averse �rm, between serving the whole market

and serving only one half of it.

3.3 Selecting a unique equilibrium price

The existence of multiple equilibrium prices raises the question of their selection.

This is especially important in our two-stage setting since the anticipated Nash

equilibrium price will be determinant for �rms' choices of capital holding in the
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preceding stage. A possible argument relies on a collusion analysis6. Since �rms do

not collude in our model, it seems natural to favour the Nash equilibrium price(s)

that are more robust to collusion. Let us consider a collusive group, but without

punishment (short-run price competition) . For collusion to be credible in this case,

all collusive equilibria should be Nash equilibria, i.e. an element of the set of Nash

equilibrium prices between [pout, pN ] since any price higher than pN does not resist

to unilateral deviation (price undercutting). Thus without punishment possibilities,

the highest price of this set, pN is likely to be chosen and applied in a collusive

agreement.

Another argument also pleads for the selection of the highest price. Intuition suggests

that high equilibrium prices are more likely to deter collusion, since they let �rms

with high oligopolistic rents and so reduce the size of punishment if a price war occurs

after some �rms break the collusive agreement. Formally, let us consider a collusive

price pC strictly above the maximum Nash equilibrium price, i.e. pC > pN . Suppose

that the n �rms are identical with each �rm's expected value written as V (p, n) for
a given price p when the n �rms share the market equally. Let δ be the discount

factor, identical among �rms, and T the number of periods over which collusion is

supposed to take place. Under collusion, each �rm gets

V = (1 + δ + δ2...+ δT )V (pC , n) (11)

If a �rm slightly undercuts the price to pC − ε, it get V (pC − ε, 1) in the �rst

period, which is higher than V (pC , n) for an ε is close to zero. But such unilateral

deviation triggers a price war that leads to V (pNE , n) in the following periods, with

pNE ∈ PNE . Hence, �rms will stick to the collusive price if

(1 + δ + δ2...)V (pC , n) ≥ V (pC − ε, 1) + (δ + δ2...)V (pNE , n)

Strict equality de�nes a threshold δlim above which collusion occurs. For T = +∞,

this threshold is equal to

δlim =
V (pC , 1)− V (pC , n)
V (pC , 1)− V (pNE , n)

Since V (pNE , n) strictly increases with pNE , δlim increases with pNE . Hence the

intuition that collusion is less likely to occur for higher equilibrium prices is veri�ed.

In this sense, the highest Nash equilibrium price pN can be selected as the more

robust to collusion. In the following section, in which stage 1 choice of capital is

characterized, �rms will be assumed to anticipate this pN as the outcome of price

competition without any uncertainty.

6Another kind of argument in favour of pN can also be found in the framework of evolutionary
game theory, but we do not develop it in details here.
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4 Stage 1: Capital choice

At stage 1, �rms non-cooperatively determine their levels of additional capital, Ki.

We look for the Nash equilibria, that is a set of strategies (K1, ..,Kn) such that there
is not any pro�table unilateral deviation for any �rm. Since the �rm(s) with the

highest level of internal capital determine(s) the market price pN (max[K1, ...,Kn])7,
while the competitors take the price as given, one must distinguish price-making

and price-taking �rms when studying the consequences of marginal deviations. The

price-making �rms take into account the strategic, product-market e�ect of their

internal capital when choosing it, while price-taking �rms do not. We de�ne the

objective function of the �rms below.

De�nition 3. The value of the �rm net of capital, Vi(.), is de�ned as follows 8

Vi : (K1, ..,Kn)→ P
[
wi1 + π

(
pN (K)

)
−R

(
wi1 + π(pN (K)), Q(pN (K))

)]
− (1 + τ)Ki

where K = max[K1, ...,Kn].

Depending on the status of the �rm (price taking or price making), the behaviour

of the function is quite di�erent. For a �rm where Ki = K the anticipated Nash

price is a function of Ki. Otherwise, the anticipated Nash price only depends on

an exogenous K̄. Such formal clari�cation being made, we are now able to study

the stage 1 subgame in more depth. The �rst step is to characterize the behavior of

Vi(.), and the sign of a marginal deviation, in the symmetric case.

a) Marginal deviation of a price-taking �rm

For a price-taking �rm, K = max[K1, ...,Kn] ≥ Ki. In the symmetric case, we are

looking at the sign of the �rst order derivative of Vi, for an exogenous price equal to

pNKi

V ′iTaker(K
i) = (1−R1)Pw︸ ︷︷ ︸

MB

− (1 + τ)︸ ︷︷ ︸
MCdirect

(12)

The �rst-order derivative formalizes the trade-o� between the marginal cost of cap-

ital, MCdirect, and the marginal bene�t of reducing the cost of risk for the �rm,

MB. If capital is not costly to hold, i.e. τ = 0, the �rst-order derivative becomes

(1−R1)Pw − 1 which is always positive since by assumption R1 ≤ 0 and Pw ≥ 1.

b) Marginal deviation of a price-making �rm

For a price-making �rm, K = max[K1, ...,Kn] = Ki. The �rst-order derivative of

Vi(Ki) is written as

7The following results are true for all anticipated strategies of equilibrium prices p(K1, ..., Kn)

such that ∂pN

∂w1
≤ 0 (Lemma 1).

8The ex-ante value of the �rm evaluated at pB is the same for serving a part of the market or
the whole market. For the sake of simplicity, we work on the �whole market� expression.
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V ′iLeader(K
i) = (1−R1)Pw︸ ︷︷ ︸

MB

−
[
Q′(pN )R2 −

∂π

∂pN
(1−R1)

]
∂pN

∂Ki
Pw︸ ︷︷ ︸

MCstrategic

− (1 + τ)︸ ︷︷ ︸
MCdirect

(13)

When the �rm i is the most capitalized, it has to take into account the strategic

e�ect due to product market competition MCstrategic in addition to the direct cost-

of-risk reduction incentive MB and the marginal direct cost MCdirect in its capital

budgeting decision. This strategic e�ect represents a cost, since increasing internal

capital reduces the market price set at stage 2 (Lemma 1). It is decomposed into

two distinct terms that correspond to the following e�ects. The �rst one, strategic

wealth e�ect, is equal to

MCstratW (Ki) = −∂p
N

∂Ki

∂π

∂pN
(1−R1)Pw

Indeed because of increased competitive pressure, the increase in expected �nal

wealth due to more capital is partly counterbalanced by lower expected pro�ts. If

the price-making �rm i chooses its capital in a naive way, i.e. without considering

this e�ect, it would overvalue its expected �nal wealth, and so the real cost of risk

in its capital budgeting decision. The second term that we name strategic demand

e�ect is equal to

MCstratD(Ki) =
∂pN

∂Ki
Q′(pN )R2Pw

It is null when the demand is price-inelastic. By lowering the market price, a marginal

increase in capital commits each �rm to serve a higher demand, and so exposes them

to a higher level of risk.

c) Assumption of concavity

The question of the sign of both marginal deviations is important to understand the

trade-o� of the players. We make the two following assumptions and de�ne in the

following manner the levels of external capital K∗ and K+

• (A6a) ∀ Ki, V ′′iLeader(K) ≤ 0 and ∃Ki∗ : V ′iLeader(K
i∗) = 0

• (A6b) ∀ Ki, V ′′iTaker(K) ≤ 0 and ∃Ki+ : V ′iTaker(K
i+) = 0

(A6) makes the analysis tractable. K∗ de�nes the level of capital under which the

price-maker �rm has interest to deviate by increasing its level of capital. Whereas

K+ de�nes the level above which the price-taking �rm has interest to deviate by

lowering its capital. Note that V ′iLeader(K
i) = V ′iTaker(K

i) −MCstrategic. It follows

directly that K∗ < K+.

d) Equilibria characterisation
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Following the previous discussion, we place ourselves under assumption (A6) in the

case of a symmetric oligopoly of n �rms, characterized by their initial wealth w0.

Since �rms are perfectly symmetric, for all i, j Ki∗ = Kj∗ = K∗ and Ki+ = Kj+ =
K+ . We have the following proposition

Proposition 3. Under assumptions (A1) to (A6), if w1
0 = ... = wn0 = w0, there

exists a continuum of symmetric equilibria K1 = ... = Kn = K such that K∗ ≤ K ≤
K+.

Proof : see appendix.

Figure 4: Equilibrium capital choices

Figure 4 provides a graphical illustration of the continuum of Nash symmetric equi-

libria. The curve represents the net value function V (.). The right-hand arrows

correspond to the marginal net value of an increase of capital for a price-making

�rm, whereas the left-hand arrows show the marginal net value of a decrease of capi-

tal, for price-taking �rm. When K < K∗, a �rm has no incentives to decrease capital

as the marginal net value of being the follower is negative, whereas the marginal net

value of increasing capital and being leader is positive. Thus it is driven to K = K∗.

For all K between K∗ and K+, the �rm has no interest in increasing nor lowering

its capital level as both would induce a lower net bene�t (as taker or leader). For K

higher than K+ however, there is no incentive for the �rm to increase capital, but

as a follower it has an interest in lowering her capital level as marginal net value for
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holding one more units of capital is too low compared to the cost of holding it. This

leads to a continuum of Nash Equilibrium of which one can select the set leading to

the higher �rm's value as in the case of the equilibrium price.

The case of asymmetric �rms follows simply. To grasp the intuition of the game,

consider 2 �rms l respectively h, with a low, respectively high, level of initial capital:

wl0 < wh0 . First note that if assumption (A6a) holds for VlLeader, it holds for VhLeader
(see appendix E). The �rm with the lowest level of initial capital is the more risk

averse. To have the same level of risk aversion, �rm l has to hold much more costly

capital than �rm h. As the cost of capital is linear, they will both obtain their

maximal net value for the same level of wealth w̄ = wl0 +K∗l = wh0 +K∗h. As long as

�rm l does not have the same amount of wealth as �rm h, it has interest to hold the

same total of capital, up to K+, level at which it is to costly to hold capital. This

leads to the following Proposition

Proposition 4. Under assumptions (A1) to (A6), if w1
0 < ... < wn0 , there exists a

continuum of Nash equilibria (K1, ...,Kn), where ∀ i < n, Ki = K∗1 + w1 − wi, and
K∗1 ≤ Kn ≤ K+

1 .

Proof : see appendix.

For reasons similar to those developed to select the Nash equilibrium price, we focus

on the level of capital that maximizes �rm's net value. Due to its implicit de�nition,

K∗ depends on the initial level of capital w0. Intuitively a high level of initial capital

could lead to a Nash equilibrium of no additional capital. Following Proposition 3,

we can show that in this case, that is when V ′i (0) > 0, K = 0 is a Nash equilibria.

e) Analysis of the results

The model provides a framework with an endogenous choice of capital that accounts

for speci�cities of the insurance market. It enhances the strategic role of capital in

the product market competition of insurance �rms. Indeed, �rms have two di�erent

ways to manage risks. The �rst one is by acquiring more capital at �rst stage to lower

their risk premium. The second one is by setting a higher price everything else being

equal at the second stage. Both ways to hedge interact in a price competition setting.

Indeed the opportunity cost of capital limits the amount of capital an insurance

company may hold before subscription. A higher level of capital however induces a

decrease in insurers' cost of risk. This allows for a more aggressive attitude on the

market, a decrease in their equilibrium prices and thus an increase in the quantity

insurers deliver. Thus the level of capital is limited by its strategic cost in addition

to the cost of holding it.

The model allows for a double set of continuum of equilibrium : continuum of equi-

librium prices at a �xed capacity, and continuum of sets of capital choices, when
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anticipating the maximum Nash Price pN . Following the arguments developed pre-

viously we focus on the equilibrium extracting the highest rents for the �rms, that

is the set of K∗ and the equilibrium price pN .

Corollary 1. In the preceding framework, following a symmetric negative shock on

initial wealth level, prices rise and global market capacity decreases.

The same results hold in the case of a positive shock on the cost of capital.

Proof : The concavity of function Vi(.) leads to the result, derived from Proposition

3.

This result is interesting for the study of cycles. A high cost event in an industry with

uncertainty on costs leads to a decrease of the capital available. In our framework,

a lower initial capital leads to a lower level of capital (initial and external) at the

end of Stage 1, due to the cost of additional capital. The higher resulting price on

the product market leads in the case of an elastic demand to a contraction of the

industry's global capacity.

Note that in the preceding symmetric framework, a higher cost of capital leads to

higher prices on the product market as capital is more costly to hold, and thus a

contraction of the quantity supplied to the market in the case of elastic demand. An

asymmetry in cost of capital for �rms leads to interesting results. The �rm with the

lowest cost of capital chooses the level of capital that maximizes her net value and

leads the level of price on the market. The �rms with the highest cost of capital

follows her by choosing her level of capital depending on the price �xed by the other

one. This result enhances the importance of the cost of capital as a strategic variable

in the insurance industry.

An other interesting question, regarding the insurance industry, is the in�uence of

the number of �rms on capital choice and intensity of competition.

Corollary 2. Consider the n-�rms oligopoly with k ≤ n identical �rms having a

higher level of internal capital than the n− k other �rms. Under assumptions (A1)

to (A5), pN decreases with k.

Proof : see appendix.

Let us �rst focus on the impact on the equilibrium price for a �xed level of capital w1.

As the number of identical, best capitalized �rms increases, the trade-o� between

serving the whole market and a fraction 1/n of it is clearly modi�ed. On the one

hand, when n becomes large, the risk from serving 1/n becomes smaller, whereas the

risk associated with serving the whole market is unchanged. Thus the di�erence in

terms of risk premium increases between the two options. This tends to incite �rms

to keep on serving a share 1/n of the market. On the other hand, from an expected

pro�t perspective, the incentive to cut price clearly increases when n increases, since

expected pro�ts are multiplied by n for a �rm which would follow such strategy.
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Figure 5: Maximum Nash prices, for a market of 2 symmetric �rms and 3 symmetric
�rms - Case of inelastic demand.

Under Assumptions (A1) to (A5), this trade-o� is no longer ambiguous. The graph-

ical intuition of the result is quite intuitive. Figure 5 illustrates this proposition in

the case of inelastic demand. An increase in the number of reinsurer, for the same

price, diminishes the surplus of the �rm, as the quantity of the market served by

the �rm is lessened (from 1/nth to 1/n + 1th). Due to the scissors e�ect described

previously, the maximum Nash equilibrium price pNn+1 for a market with n+ 1 �rms

is below the maximum Nash equilibrium price pNn for a market with n �rms. Thus,

the higher the number of less risk averse �rms, the lower the market price.

f) Monopoly case

As an extreme case, we consider the monopoly case. At stage 2, the monopolistic

�rm is characterised by an initial wealth w0 +K. The monopolistic price, noted pM ,

is the classical solution of expected value maximization, and veri�es pM > pN (K).
Note that the monopolistic price is a decreasing function of the level of initial wealth

- and thus of K - as a higher level of capital induces a lower risk aversion.

At stage 1, the monopolistic �rm chooses its optimal level of additional capital KM

by maximizing her net value V , anticipating the price pM (K). And we have KM =
K∗(pN ).

5 Social welfare and the need for capital regulation

In the symmetric case, social welfare SW is de�ned as the sum of consumer surplus

CS and �rms' pro�ts (i.e. the �rms' values net of additional capital) with
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CS(p) =
∫ +∞

p
Q(x)dx

The social welfare function is thus written as

SW (K, p) = CS(p) + n

(
P
[
w0 +K + π −R

(
w0 +K + π,Q(p)/n)

]
− (1 + τ)Ki

)
In the case of the insurance market, it appears more realistic as prices are seldom

control except through di�erentiation while capital regulation is much more com-

mon9. We thus place ourselves in this second-best framework by supposing that

government has direct control over the level of �rms' capital but not on prices.

Proposition 5. Under assumptions (A1) to (A5), the level of capital Kg that max-

imises social welfare is higher than K∗.

Proof. If the benevolent and omniscient government only control K, then the �rst

order condition is

dpN

dK
Q′(pN )︸ ︷︷ ︸
T1

+
1
n

(
(1−R1)Pw −

[
Q′(pN )
n

R2 −
∂π

∂pN
(1−R1)

]
∂pN

∂K
Pw − (1 + τ)

)
︸ ︷︷ ︸

T2

= 0

The marginal consumer surplus (T1) is positive. The second term (T2) is equal to 0

for K = K∗. Thus assuming SW concave leads to Kg > K∗.

This result implies that imperfect competition leads to under-capitalization when

compared to the social optimal capital. In our imperfect competition framework,

note that higher capital requirements could lead to more competitive prices, as �rms

are less risk averse and potentially to a better social welfare. It is interesting to

point out that this model leads to a rationale for capital regulation due to imperfect

competition rather than standard solvency arguments. Note that control of capital

choice reduces the interval of equilibrium prices available at the second stage of the

game.

6 Concluding Remarks

The model extends Froot et al. (1993)'s framework by considering capital choices

in a price competition setting for risk averse insurance �rms. The principal result

is the existence of a continuum of Nash equilibrium capital choices. Each level of

capital leads to a continuum of Nash equilibrium prices of which we distinguish the

one leading to �rms' maximal value. We thus extends Wambach (1999)'s results,

and provide a di�erent analysis based on an associated risk premium: �rms face

9Note that it is equivalent for the government to play on the price or on the level of capital as
they both interact, when considering that �rms anticipate the maximum Nash price. However in
the case of a continuum of equilibria, this may have a di�erent signi�cation
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the trade-o� between higher expected wealth and higher risk when expending their

market shares, allowing for an endogenous rationale for raising more capital. We

show that cost of capital as well as initial wealth levels of the �rms have direct

impacts on the market equilibrium prices. The model provides a rationale for an

endogenous choice of capital level, as well as for capital regulation: �xing a capital

level reduces the interval of equilibrium prices available at second stage and thus

may enhance social welfare. The characterisation of the dual interaction between

�nancial and product market imperfections is particularly interesting to discuss in

the case of the insurance industry.

Firstly, the model provides interesting results in a cycle analysis. The model is

certainly static, but could be extended to a dynamic framework that would better �t

the insurance industry questions. In her review of insurance cycle literature, Weiss

(2007) analyzes the part of literature focused on �real cycles: shock theories and

explanations for crises�. In the literature, two basis models are used in the classical

underwriting cycle theory: capacity constraint and risky debt hypothesis. The model

is related to a capacity constraint that emerges endogenously from the risk-aversion

of the �rms and is heighten by the typical oligopolistic structure of the market.

Costly capital reinforces this e�ect. Froot et al. (1993)'s framework allows for the

distinction between internal funds and ex-post capital i. Cost of internal capital

has been evaluated by some authors: Zanjani estimated from data over the period

1989-1998 the capital cost for insurance to be up to 13% for reinsurance lines. In

the reinsurance industry, cost of external capital may be observed with the recourse

to di�erent ways to raise capital after an important catastrophic events. Since the

end of the nineties, new ways for recapitalization have emerged for this industry.

Lane (2007) analyses their use by the reinsurance industry following the costly 2005

year that had seen Hurricanes Katrina, Rita, and Wilma. Total cost was estimated

for the whole industry to 86,5$ bn of which 42% were supported by the reinsurance

industry. During the 15 months following the hurricanes, Lane accounts for 33,5$

bn raised by reinsurance industry10. Costs of hybrid capital may give a proxy for

the expensiveness of ex-post capital. Comparisons between recourse to external and

internal capital are however not so easy. In their study, Weiss and Chung (2004) use

reinsurance contracts over the period 1991-1995 in the US to analyze the impact of

�nancial quality and global capacity on reinsurance prices. The coe�cients they �nd

do not support the hypothesis that external equity is more costly than internal equity

but they underline that such results are to be taken with caution because recourse to

external capital much more easy to estimate than retained earnings. Further study

would be needed on this point.

Concerning the price of reinsurance, the results are in line with the latest studies on

the catastrophe reinsurance market that shows that pricing far exceed competitive

pricing in excess of loss contracts (Weiss and Chung, 2004; Froot, 2001; Froot and

10This amount is split in capital raised by ancient companies (36%), and new companies (26%),
through Insurance Linked Securities (19%), Sidecars (19%).
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O'Connell, 2008). In the present case of DARA �rms, capital market imperfections

as well as product market imperfections are integrated in the market price of risk.

Concerning the impact of the cost of capital on the pricing of risks in the reinsurance

industry, Froot and O'Connell (2008) have given evidence of it, using reinsurance

data (489 US-contracts over the period 1970-1994).

In the strand of insurance literature, capital constraints were at �rst been taken as

exogenous, for standard reason of regulation on the default risk - as it is the case in

(Gron, 1990). Few other models have proposed endogenous explanations for �rms'

choice of level of capital. Among them, Zanjani (2002) considers risk neutral insur-

ance companies, that have limited liability. They face insolvency-carer consumers,

and thus have incentives to hold costly capital. The �rm is thus confronted with a

quality/cost trade-o� and diversi�es between the di�erent lines of risk. In this case,

capital requirements to maintain solvency have an impact on prices. We give here a

di�erent rationale for endogenous capital choice linked to strategic choices in a case

of �nancial and product market imperfections. Higher level of capital retention could

lead to a lower price approaching pure competition and thus enhancing customer's

wealth. In the case of an oligopolistic market structure, this leads to interesting

conclusions in a regulatory approach. The model provides a rationale for capital

regulation, that rely on other arguments than solvency issues as classically social

failure costs with limited liability issues (Matutes and Vives, 2000). Each capital

equilibrium leads to a continuum of Nash prices from which the maximum- value

maximising price is exerted. A regulation on capital can avoid situations in which

�rms are under capitalised, leading to maximum Nash prices all the more high, and

lower welfare. Capital regulation could then have a double impact: reduce �rm

insolvency as classically, bu also enhance competition.

Appendix

We give here the proof of the following propositions and corollaries.

A-Proof of Proposition 1

Let us note pm the monopoly price of the symmetric �rms.

Lemma 2. PNE∩]pm,+∞[= ∅

Proof (Weibull provides a similar proof in the case of convex costs of production):

Let us suppose that all �rms price at p ∈ PNE , with p > pm. Firm i has a demand

qi < Q(p). As Q(p) is continuous and limp→+∞Q(p) = 0.

∃p∗ > p : Q(p∗) = qi

EP (wi1 + (p∗ − L̃)Q(p∗)) = EP (wi1 + (p∗ − L̃)qi) > EP (wi1 + (p− L̃)qi)
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By de�nition, as pm is the optimal monopoly price, EP (wi1 + (pm − L̃)Q(pm)) >
EP (wi1 + (p∗ − L̃)Q(p∗)),

EP (wi1 + (pm − L̃)Q(pm)) > EP (wi1 + (p− L̃)qi)

As p > pm, thus the �rm i can unilaterally deviate that enhances �rm's value. Thus

p is not a Nash equilibrium.

Lemma 3. (Wambach): Under assumptions (A1) and (A3), if there is a price in

the market such that the n �rms have a value equal to their outside option, the value

of any �rm serving the whole market at this price is strictly smaller, formally:

EP (wi1 + π̃i(p,Q/n)) = V out ⇒ EP (wi1 + π̃i(p,Q)) < V out

Proof: See Wambach (1999) for Proof.

Lemma 3 leads to p ∈ PNE if and only if EP (wi1+π̃i(p, Q(p)
n )) ≥ EP (wi1+π̃i(p,Q(p)))

that is equivalent to p ∈ PNE if and only if p ∈ [pout, pN ]. Indeed, let us consider a
deviation of �rm i when all �rms set a common price p ∈ PNE . If i raises her price,
then it obtains no demand, as all the residuals �rms meet the demand. If i lowers

her price, she serves the whole market, and decreases its pro�t.

As P is concave, we have

d2

dqi2
EP (wi1 + π̃i(p, qi)) = E

(
(p− L̃)2Pww(wi1 + π̃i(p, qi))

)
< 0

As pN veri�es EP
(
wi1 + π̃i(pN , Q(pN )

n )
)

= EP
(
wi1 + π̃i(pN , Q(pN ))

)
, a price-taker

�rm has an optimal output between Q(p)
n and Q. From (A4), we directly obtain that

the competitive price is lower than pN .

Lemma 2 leads to the conclusion that pN is lower than the maximal monopoly price.

Let us consider p ∈ PNE . As pout = min(PNE), EP (wi1 + π̃i(pout, Q(pout)
n )) = V out.

From (A3), we obtain EP (wi1 + π̃i(pN , Q(pN )
n )) > V out. Thus the value of the �rms

at pN is higher than her outside option.

B-Proof of Lemma 1 :

As pNi is the indi�erence price for �rm i for serving the whole market or half of it,

then EP
(
wi1+π̃i(pN ,

Q(pN )
n )

)
= EP

(
wi1+π̃i(pN , Q(pN ))

)
. As P is strictly increasing,

this is equivalent for i, j to

π̄(pNi , Q(pNj )/2)−R(wi + π̄(pNi , Q(pNj )/2), Q(pNi )/2)

= π̄(pNi , Q(pNi ))−R(wi + π̄(pNi , Q(pNi )), Q(pNi )) (14)
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Let us compare at price pNi the expected value of �rm j for serving the whole market

and half of it. Assumption (A5) leads to:

R(wj + π̄(pNi , Q(pNi )/2), Q(pNi )/2)−R(wj + π̄(pNi , Q(pNi )), Q(pNi )) >

R(wi + π̄(pNi , Q(pNi )/2), Q(pNi )/2)−R(wi + π̄(pNi , Q(pNi )), Q(pNi ))

Using Equation 14:

R(wj + π̄(pNi , Q(pNi )/2), Q(pNi )/2)−R(wj + π̄(pNi , Q(pNi )), Q(pNi )) >

π̄(pNi ,
Q(pNi )
n

)− π̄(pNi , Q(pNi ))

Thus

π̄(pNi , Q(pNi ))−R(wj + π̄(pNi , Q(pNi )), Q(pNi )) >

π̄(pNi , Q(pNi )/2)−R(wj + π̄(pNi , Q(pNi )/2) (15)

And as P is strictly increasing, the expected value to cover the whole market is higher

than the expected value to cover half of it. Thus the indi�erence premium is lower

for the less risk averse �rm, that is the �rm with higher level of initial capital.

Thus under assumptions (A1), (A2) and (A5), in the case of symmetric �rms, wj1 >

wi1 ⇒ pNi > pNj . The equation 14 implicitly de�ning pN allows for the continuity

of pN compared to w1. Thus
∂pN

∂w1
≤ 0.

C-Proof of Proposition 2:

Case poutmax < pNmin:

In the case where poutmax < pNmin, Lemma 1 leads to p ∈ PNE if and only if EP (wi1 +
π̃i(p, Q(p)

n )) ≥ EP (wi1 + π̃i(p,Q(p))) that is equivalent to p ∈ PNE if and only if

p ∈ [poutmax, p
N
min]. Let us suppose that p > pNmin. The �rm j that has the minimum

Nash price pNmin may lower the price and then catch the whole market. Thus p is not

a Nash Equilibrium. Then let us consider a deviation of �rm i when all �rms set a

common price p ∈ PNE . If i raises her price, then it obtains no demand, as all the

residuals �rms meet the demand. If i lowers her price, she serves the whole market,

and decreases its pro�t. p de�nes then a Nash equilibrium

The extension to an oligopoly of n �rms is immediate and when poutmax > pNmin.

However other Nash equilibrium may exists that consider less �rms. In fact, for

p < poutmax, only n− 1 �rms stay on the market. Let us de�ne for the remaining �rms

pn−1
max the maximum of the prices for which the �rms are indi�erent between serving

1/n-1 th of the market or their outside option. If pn−1
max < poutmax, there still exists a

continuum of equilibrium prices for a n− 1 oligopoly.

For m = 1..n− 1, we de�ne for the m �rms remaining in the market

pmmax = max
i=1..m

{
pouti : EP (wi1 + π̃i(p,Q(p)/m)) = EP (wi1 + π̃i(p,Q(p)))

}
(16)
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We note the following interval, that may be empty:

Im =
[
pmmax; max

i=m+1..n
{pmmax}

[
(17)

When assumptions (A1) to (A5) hold, in the case of non-symmetric �rms that di�ers

by their risk aversion, there exist sub markets price equilibrium intervals Im for each

m-oligopoly.

D-Second order Derivatives of V(.):

1. Price-Taking Firms. For each set of strategies (Ki), we consider the variation

of marginal net value for the price-taking �rms, at the price pN (K). We note this

variation V ′′iTaker(K
i), and as marginal cost is constant, we have the following ex-

pression:

V ′′iTaker(K
i) = −

(
−R11(1 +

∂π̄

∂K
)−R12

∂Q

∂K

)
Pw +

(
1 +

(1−R1)∂π̄
∂K

−R2
∂Q

∂K

)
Pww

(18)

2. Price-Taking Firms. For each set of strategies (Ki), we consider the variation of

marginal net value for the price-making �rms. The second-order derivative is given

by

VLeaderi
′′(Ki) =

[(
∂2pN

∂Ki2

∂π

∂pN
+
∂pN

∂Ki

∂π2

∂pN2

)
(1−R1)− T

(
TR11 +

∂pN

∂Ki
Q′(pN )R12

)
−
(
∂2pN

∂Ki2
Q′(pN ) +

∂pN

∂Ki
Q′′(pN )

)
R2

−∂p
N

∂Ki
Q′(pN )

(
TR12 +

∂pN

∂Ki
Q′(pN )R22

)]
Pw

+
[
(1−R1)− PM(K̄)

]2
Pww

where T = 1 + ∂pN

∂Ki
∂π
∂pN

E-Proof of Proposition 3

Consider an unilateral deviations of a �rm i in the case of an n oligopoly of symmetric

�rms from the symmetric Nash equilibrium candidate (K̄, K̄). Under Assumption

(A6) we only need to look at marginal deviations. We �rst note that:

V ′iTaker(K
i) = V ′iLeader(K

i) +MCstratW (Ki) +MCstratD(Ki) (19)

Increasing capital: Ki > K̄.

If �rm i chooses to increase its level of capital form the symmetric situation, it be-

comes the leader of the game, thus determines the market price pN (Ki). Considering
Assumption (A6):

• ∀K̄ < K∗, V ′iLeader(K̄) > 0. Hence K̄ < K∗ cannot be a Nash equilibrium.
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• ∀K̄ ≥ K∗, V ′iLeader(K̄) ≤ 0. Hence all K̄ ≥ K∗ are candidates to be a Nash

equilibrium.

Decreasing capital: Ki < K̄.

If �rm i chooses a lower level of capital than the other �rms then the market price

remains equal to pN (K̄), which is determined by the more capitalized �rms. Con-

sidering the previous discussion:

• ∀K̄ < K∗, −V ′iTaker(K̄) = −V ′iLeader(K̄)−MCstratW (K̄)−MCstratD(K̄) ≤ 0,
Hence a marginal decrease in capital is not pro�table.

• ∀K+ ≥ K̄ ≥ K∗, −V ′iTaker(K̄) = −MB(K̄) + MCdirect(K̄) ≤ 0 following

assumption (A6b).

• ∀K > K̄, −V ′iTaker(K̄) = −MB(K̄) + MCdirect(K̄) ≥ 0 thus a marginal

decrease of capital is unilaterally pro�table.

We thus conclude that the symmetric couples of capital (K̄, K̄) are a Nash equilib-

rium for K∗ ≤ K̄ ≤ K+.

F-Proof of Proposition 4

Consider 2 �rms l respectively h, with a low, resp. high, level of initial capital:

wl0 < wh0 . If VlLeader follows (A6a) Assumption, then V ′lLeader is decreasing. For all

Kl, let us de�ne Kh such that wl0 +Kl = wh0 +Kh, Kl < Kh. Thus V
′
hLeader(Kh) =

V ′lLeader(Kl + wl0 − wh0 ), is also decreasing in Kh. And VhLeader follows assumption

(A6a). Both �rms rach their maximum net value (for leader) for the same level of

capital wl0 +K∗l = wh0 +K∗h where K∗h < K∗l .

We use the same logic as in the proof of Proposition 3. Consider �rm h. For all

Kh ≤ K∗h, �rm h when being the leading �rm has the interest for increasing her level

of external capital. In this situation, �rm l has always interest to increase as well

her level of external capital up to K∗l , where the Nash price is pN (wh0 +K∗h).
For all K∗h ≤ Kh ≤ K+

h , �rm
h, as the leading �rm, has no interest to increase her

level of external capital, neither has she interest to lower it price-taking �rm. For

all K∗l ≤ Kl ≤ K+
l , �rm l as the leading �rm has no interest to any deviation, when

wl0 +Kl = wh0 +Kh.

Let us note KM
h : wl0 + K+

l = wh0 + KM
h . For all Kh > KM

h , �rm h is the leading

�rm, as she is less risk averse. l chooses the level of external capital maximizing her

net value as a follower, K < K+
h , and �rm h thus bene�ts from lowering her level of

capital. So for all Kh > KM
h , there are no Nash equilibrium.

G-Proof of Corollary 2:

We provide the proof of the corollary for the case of n symmetric �rms. We consider

n+ 1 �rms with the same initial wealth w1 that compete on price. We note pNn the
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maximum Nash price of the competition of n of these �rms, and pNn+1 the maximum

Nash price for n+ 1 �rms. By de�nition

EP
(
wi1 + π̃i(pNn ,

Q(pNn )
n

)
)

= EP
(
wi1 + π̃i(pNn , Q)

)
or EP (wi1 + π̃i(p

N
n ,Q)
n ) = EP (wi1 + π̃i(pNn , Q)). The concavity of P leads to the

concavity of EP in the output. Thus, for pNn , EP (wi1 + n
n+1

π̃i(p
N
n ,Q)
n ) < EP (wi1 +

π̃i(pNn , Q)) that is

EP
(
wi1 + π̃i(pNn ,

Q(pNn )
n+ 1

)
)
< EP

(
wi1 + π̃i(pNn , Q)

)
Thus all �rms prefer serving the whole market to (n+1)th of it at pNn . As all functions
are continuous, a small decrease in price will not violate the condition of equilibrium

for a market with n + 1 symmetric �rms that is EP
(
wi1 + π̃i(pNn+1,

Q(pN
n+1)

n+1 )
)

=

EP
(
wi1 + π̃i(pNn+1, Q)

)
. Thus, using (A4), pNn+1 < pNn .
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