- A FIEGARCH Transformation As discussed in Perez & Zaffaroni (2008) and Zaffaroni (2009), to estimate the FIEGARCH model using FWE, it is necessary to rewrite the model in a signal plus noise form, for which the spectral density can be derived. Let’s begin with the original FIEGARCH(1,d,2) model: t = zth 1/2 t (29) ln(ht) = É + Φ(L)g(zt−1) (30) g(zt) = θzt + γ[|zt| − E(|zt|)] (31) Φ(L) = (1 − L)−d [1 + α[2](L)][β(L)]−1 (32) where for FIEGARCH(1, d, 2) α[2](L) = αL, β(L) = 1 − βL. Following Zaffaroni (2009), this can be rewritten as 2 t = z2 t ht (33) ln 2 t = ln z2 t + ln (ht) (34) ln(ht) = É + Φ(L, )g(zt−1) (35) Φ(L)g(zt−1) = ∞ X s=0 Φsg(zt−s−1) (36) g(zt) = θzt + γ[|zt| − E(|zt|)], (37) which leads to ln 2 t = ln z2 t
Paper not yet in RePEc: Add citation now
- À ), (45) where È(x) and Ψ(x) are digamma and trigamma functions respectively. Evaluated at Fourier frequencies, this spectral density occurs in both terms of the FWE objective function. For a generalization to zt following GED or Student-t distribution, see Perez & Zaffaroni (2008). B Spectral Density Estimation 0 0.1 0.2 0.3 0.4 0.5 (a) d=0.25 0.1 0.2 0.3 0.4 0.5 (b) d=45 0 0.1 0.2 0.3 0.4 0.5 4.5 5.5 6.5 7.5 (c) d=-0.25
Paper not yet in RePEc: Add citation now
Baillie, R. T., Bollerslev, T., & Mikkelsen, H. O. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74(1), 3–30.
Barunik, J. & Vacha, L. (2014). Realized wavelet-based estimation of integrated variance and jumps in the presence of noise. Quantitative Finance, forthcoming.
- Beran, J. (1994). Statistics for long-memory processes. Monographs on statistics and applied probability, 61. Chapman & Hall.
Paper not yet in RePEc: Add citation now
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Bollerslev, T. & Mikkelsen, H. O. (1996). Modeling and pricing long memory in stock market volatility. Journal of Econometrics, 73(1), 151 – 184.
- Bollerslev, T. & Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances. Econometric Reviews, 11, 143–172.
Paper not yet in RePEc: Add citation now
Cheung, Y.-W. & Diebold, F. X. (1994). On maximum likelihood estimation of the differencing parameter of fractionally-integrated noise with unknown mean. Journal of Econometrics, 62(2), 301 – 316.
- Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. The Annals of Statistics, 17(4), 1749–1766.
Paper not yet in RePEc: Add citation now
- Dahlhaus, R. (2006). Correction: Efficient parameter estimation for self-similar processes.
Paper not yet in RePEc: Add citation now
- Donoho, D. L. & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3), 425–455.
Paper not yet in RePEc: Add citation now
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50(4), 987–1007.
Engle, R. F. & Gonzalez-Rivera, G. (1991). Semiparametric arch models. Journal of Business & Economic Statistics, 9(4), 345–359.
Fa y, G., Moulines, E., Roueff, F., & Taqqu, M. S. (2009). Estimators of long-memory: Fourier versus wavelets. Journal of Econometrics, 151(2), 159 – 177.
- Fox, R. & Taqqu, M. S. (1986). Large-sample properties of parameter estimates for strongly dependent stationary gaussian time series. The Annals of Statistics, 14(2), 517–532.
Paper not yet in RePEc: Add citation now
Frederiksen, P. H. & Nielsen, M. O. (2005). Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration. Econometric Reviews, 24(4), 405–443.
Gonzaga, A. & Hauser, M. (2011). A wavelet whittle estimator of generalized long-memory stochastic volatility. Statistical Methods & Applications, 20(1), 23–48.
- Hardle, W., Kerkyacharian, G., Tsybakov, A. B., & Picard, D. (1998). Wavelets, Approximation and Statistical Applications. John Wiley & Sons, Incorporated.
Paper not yet in RePEc: Add citation now
Heni, B. & Mohamed, B. (2011). A wavelet-based approach for modelling exchange rates. Statistical Methods & Applications, 20(2), 201–220.
Jensen, M. J. (1999). An approximate wavelet mle of short- and long-memory parameters. Studies in Nonlinear Dynamics Econometrics, 3(4), 5.
Jensen, M. J. (2000). An alternative maximum likelihood estimator of long-memory processes using compactly supported wavelets. Journal of Economic Dynamics and Control, 24(3), 361 – 387.
Johnstone, I. M. & Silverman, B. W. (1997). Wavelet threshold estimators for data with correlated noise. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(2), 319–351.
- Moulines, E., Roueff, F., & Taqqu, M. S. (2008). A wavelet whittle estimator of the memory parameter of a nonstationary gaussian time series. The Annals of Statistics, 36(4), 1925– 1956.
Paper not yet in RePEc: Add citation now
Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica, 59(2), 347–370.
Nielsen, M. O. & Frederiksen, P. H. (2005). Finite sample comparison of parametric, semiparametric, and wavelet estimators of fractional integration. Econometric Reviews, 24(4), 405–443.
- Percival, D. B. & Walden, A. T. (2000). Wavelet Methods for Time Series Analysis (Cambridge Series in Statistical and Probabilistic Mathematics). Cambridge University Press.
Paper not yet in RePEc: Add citation now
- Percival, D. P. (1995). On estimation of the wavelet variance. Biometrika, 82(3), 619–631.
Paper not yet in RePEc: Add citation now
- Perez, A. & Zaffaroni, P. (2008). Finite-sample properties of maximum likelihood and whittle estimators in egarch and fiegarch models. Quantitative and Qualitative Analysis in Social Sciences, 2, 78–97.
Paper not yet in RePEc: Add citation now
- Whitcher, B. (2004). Wavelet-based estimation for seasonal long-memory processes. Technometrics, 46(2), 225–238.
Paper not yet in RePEc: Add citation now
- Whittle, P. (1962). Gaussian estimation in stationary time series. Bulletin of the International Statistical Institute, 39, 105–129.
Paper not yet in RePEc: Add citation now
- Wornell, G. W. & Oppenheim, A. (1992). Estimation of fractal signals from noisy measurements using wavelets. Signal Processing, IEEE Transactions on, 40(3), 611–623.
Paper not yet in RePEc: Add citation now
Zaffaroni, P. (2009). Whittle estimation of egarch and other exponential volatility models. Journal of Econometrics, 151(2), 190–200.