- Aiol…, M., Capistrán, C., and Timmermann, A. (2011). Forecast combinations, chapter 11. In Clements, M. P., and Hendry, D. F. (eds.), The Oxford Handbook of Economic Forecasting, pp. 355– 388: Oxford University Press.
Paper not yet in RePEc: Add citation now
Andrade, P., and Le Bihan, H. (2013). Inattentive professional forecasters. Journal of Monetary Economics, 60(8), 967– 982.
Ang, A., Bekaert, G., and Wei, M. (2007). Do macro variables, asset markets, or surveys forecast in‡ ation better?. Journal of Monetary Economics, 54(4), 1163– 1212.
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19(4), 465– 474.
Boero, G., Smith, J., and Wallis, K. F. (2015). The measurement and characteristics of professional forecasters ’uncertainty. Journal of Applied Econometrics. Forthcoming.
Castle, J. L., Clements, M. P., and Hendry, D. F. (2015). Robust approaches to forecasting. International Journal of Forecasting, 31, 99– 112.
Clemen, R. T. (1989). Combining forecasts: A review and annotated bibliography. International Journal of Forecasting, 5, 559– 583. Reprinted in Mills, T. C. (ed.) (1999), Economic Forecasting. The International Library of Critical Writings in Economics. Cheltenham: Edward Elgar.
Clements, M. P. (2004). Evaluating the Bank of England density forecasts of in‡ ation. Economic Journal, 114, 844 –866.
Clements, M. P. (2010). Explanations of the Inconsistencies in Survey Respondents Forecasts. European Economic Review, 54(4), 536– 549.
Clements, M. P. (2014a). Forecast Uncertainty - Ex Ante and Ex Post: US In‡ ation and Output Growth.
Clements, M. P. (2014b). Probability distributions or point predictions? Survey forecasts of US output growth and in‡ ation. International Journal of Forecasting, 30(1), 99– 117. DOI: 10.1016/j.ijforecast.2013.07.010.
Clements, M. P. (2015). Are professional macroeconomic forecasters able to do better than forecasting trends?. Journal of Money, Credit and Banking, 47,2-3, 349– 381. DOI: 10.1111/jmcb.12179.
Coibion, O., and Gorodnichenko, Y. (2012). What can survey forecasts tell us about information rigidities?. Journal of Political Economy, 120(1), 116 –159.
Coibion, O., and Gorodnichenko, Y. (2015). Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts. American Economic Review, 105(8), 2644– 78.
- Croushore, D. (1993). Introducing: The Survey of Professional Forecasters. Federal Reserve Bank of Philadelphia Business Review, November, 3– 15.
Paper not yet in RePEc: Add citation now
Croushore, D., and Stark, T. (2001). A real-time data set for macroeconomists. Journal of Econometrics, 105(1), 111– 130.
- Dawid, A. P. (1984). Statistical theory: The prequential approach. Journal of The Royal Statistical Society, ser. A, 147, 278– 292.
Paper not yet in RePEc: Add citation now
Diebold, F. X., and Kilian, L. (2001). Measuring predictability: Theory and macroeconomic applications. Journal of Applied Econometrics, 16, 657– 669.
Diebold, F. X., and Mariano, R. S. (1995). Comparing predictive accuracy. Journal of Business and Economic Statistics, 13, 253– 263.
- Diebold, F. X., Gunther, T. A., and Tay, A. S. (1998). Evaluating density forecasts: With applications to …nancial risk management. International Economic Review, 39, 863– 883.
Paper not yet in RePEc: Add citation now
Diebold, F. X., Hahn, J. Y., and Tay, A. S. (1999). Multivariate density forecast evaluation and calibration in …nancial risk management: High frequency returns on foreign exchange. Review of Economics and Statistics, 81, 661– 673.
- Diebold, F. X., Tay, A. S., and Wallis, K. F. (1999). Evaluating density forecasts of in‡ ation: The Survey of Professional Forecasters. In Engle, R. F., and White, H. (eds.), Festschrift in Honor of C. W. J. Granger, pp. 76– 90: Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
Doornik, J. A., and Hansen, H. (2008). An omnibus test for univariate and multivariate normality. Oxford Bulletin of Economics and Statistics, 70, 927– 939.
Engelberg, J., Manski, C. F., and Williams, J. (2009). Comparing the point predictions and subjective probability distributions of professional forecasters. Journal of Business and Economic Statistics, 27(1), 30– 41.
Engle, R. F., and Manganelli, S. (2004). CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles. Journal of Business & Economic Statistics, 22, 367– 381.
- Genest, C., and Zidek, J. V. (1986). Combining probability distributions: A critique and an annotated bibliography. Statistical Science, 1, 114– 148.
Paper not yet in RePEc: Add citation now
- Giordani, P., and Söderlind, P. (2003). In‡ ation forecast uncertainty. European Economic Review, 47(6), 1037– 1059.
Paper not yet in RePEc: Add citation now
- Granger, C. W. J., and Pesaran, M. H. (2000). A decision-based approach to forecast evaluation. In Chan, W. S., Li, W. K., and Tong, H. (eds.), Statistics and Finance: An Interface, pp. 261– 278: London: Imperial College Press.
Paper not yet in RePEc: Add citation now
Hall, S. G., and Mitchell, J. (2009). Recent developments in density forecasting. In Mills, T. C., and Patterson, K. (eds.), Palgrave Handbook of Econometrics, Volume 2: Applied Econometrics, pp. 199– 239: Palgrave MacMillan.
Kim, S., Shephard, N., and Chib, S. (1998). Stochastic volatility : likelihood inference and comparison with ARCH models. Review of Economic Studies, 81, 361– 393.
Kling, J. L., and Bessler, D. A. (1989). Calibration-based predictive distributions: An application of prequential analysis to interest rates, money, prices and output. Journal of Business, 62, 477– 499.
- Kullback, L., and Leibler, R. A. (1951). On information and su ciency. Annals of Mathematical Sciences, 22, 79– 86.
Paper not yet in RePEc: Add citation now
Lahiri, K., and Sheng, X. (2010). Measuring forecast uncertainty by disagreement:the missing link. Journal of Applied Econometrics, 25, 514– 538.
Lahiri, K., Peng, H., and Sheng, X. (2015). Measuring Uncertainty of a Combined Forecast and Some Tests for Forecaster Heterogeneity. Cesifo working paper series 5468, CESifo Group Munich.
Lahiri, K., Teigland, C., and Zaporowski, M. (1988). Interest rates and the subjective probability distribution of in‡ ation forecasts. Journal of Money, Credit and Banking, 20(2), 233– 248.
- Lee, T.-H., Bao, Y., and Saltoglu, B. (2007). Comparing density forecast models. Journal of Forecasting, 26(3), 203– 225.
Paper not yet in RePEc: Add citation now
- Manski, C. F. (2011). Interpreting and combining heterogeneous survey forecasts. In Clements, M. P., and Hendry, D. F. (eds.), Oxford Handbook of Economic Forecasting, Chapter 16, pp. 457– 472. Oxford: Oxford University Press.
Paper not yet in RePEc: Add citation now
Mitchell, J., and Hall, S. G. (2005). Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ’ Fan’ Charts of In‡ ation. Oxford Bulletin of Economics and Statistics, 67(s1), 995– 1033.
Pesaran, M. H., and Weale, M. (2006). Survey expectations. In Elliott, G., Granger, C., and Timmermann, A. (eds.), Handbook of Economic Forecasting, Volume 1. Handbook of Economics 24, pp. 715– 776: Elsevier, Horth-Holland.
Rich, R., and Tracy, J. (2010). The relationships among expected in‡ ation, disagreement, and uncertainty: Evidence from matched point and density forecasts. Review of Economics and Statistics, 92(1), 200– 207.
- Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23, 470– 472.
Paper not yet in RePEc: Add citation now
Rossi, B., and Sekhposyan, T. (2015). Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions. American Economic Review, 105(5), 650– 55.
- Shenton, L. R., and Bowman, K. O. (1977). A bivariate model for the distribution of p b1 and b2. Journal of the American Statistical Association, 72, 206– 211.
Paper not yet in RePEc: Add citation now
- Shephard, N. (1994). Partial non-Gaussian state space. Biometrika, 81, 115– 131.
Paper not yet in RePEc: Add citation now
Wallis, K. F. (2005). Combining Density and Interval forecasts: A Modest Proposal. Oxford Bulletin of Economics and Statistics, 67(s1), 983– 994.
Wright, J. H. (2013). Evaluating Real-Time VAR forecasts with an informative democratic prior. Journal of Applied Econometrics, 28, 762– 776. DOI: 10.1002/jae.2268.
Zarnowitz, V., and Lambros, L. A. (1987). Consensus and uncertainty in economic prediction. Journal of Political Economy, 95(3), 591–