Nothing Special   »   [go: up one dir, main page]

create a website
Optimal Portfolio Choice and Stock Centrality for Tail Risk Events. (2021). Katsouris, Christis.
In: Papers.
RePEc:arx:papers:2112.12031.

Full description at Econpapers || Download paper

Cited: 5

Citations received by this document

Cites: 87

References cited by this document

Cocites: 23

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Estimating Conditional Value-at-Risk with Nonstationary Quantile Predictive Regression Models. (2023). Katsouris, Christis.
    In: Papers.
    RePEc:arx:papers:2311.08218.

    Full description at Econpapers || Download paper

  2. Quantile Time Series Regression Models Revisited. (2023). Katsouris, Christis.
    In: Papers.
    RePEc:arx:papers:2308.06617.

    Full description at Econpapers || Download paper

  3. Limit Theory under Network Dependence and Nonstationarity. (2023). Katsouris, Christis.
    In: Papers.
    RePEc:arx:papers:2308.01418.

    Full description at Econpapers || Download paper

  4. Statistical Estimation for Covariance Structures with Tail Estimates using Nodewise Quantile Predictive Regression Models. (2023). Katsouris, Christis.
    In: Papers.
    RePEc:arx:papers:2305.11282.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Abadir, K. M., Distaso, W., and Žikeš, F. (2014). Design-free estimation of variance matrices.

  2. Allen, F. and Gale, D. (2000). Financial contagion. Journal of political economy, 108(1):1–33.
    Paper not yet in RePEc: Add citation now
  3. Anufriev, M. and Panchenko, V. (2015). Connecting the dots: Econometric methods for uncovering networks with an application to the australian financial institutions. Journal of Banking & Finance, 61:S241–S255.

  4. Avella-Medina, M., Battey, H. S., Fan, J., and Li, Q. (2018). Robust estimation of high-dimensional covariance and precision matrices. Biometrika, 105(2):271–284.

  5. Badev, A. (2021). Nash equilibria on (un)stable networks. Econometrica (forthcoming), 89(3):0000– 0000.
    Paper not yet in RePEc: Add citation now
  6. Ballester, C., Calvó-Armengol, A., and Zenou, Y. (2006). Who’s who in networks. wanted: The key player. Econometrica, 74(5):1403–1417.

  7. Basak, S. and Shapiro, A. (2001). Value-at-risk based risk management: Optimal policies and asset prices. Review of Financial Studies, 14:371–405.

  8. Bassett, G. W., Koenker, R., and Kordas, G. (2004). Pessimistic portfolio allocation and choquet expected utility. Journal of Financial Econometrics, 2:477–492.

  9. Bergk, K., Brandtner, M., and Kürsten, W. (2021). Portfolio selection with tail nonlinearly transformed risk measures—a comparison with mean-cvar analysis. Quantitative Finance, pages 1–15.

  10. Bernard, C. and Czado, C. (2015). Conditional quantiles and tail dependence.

  11. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.

  12. British journal of mathematical and statistical psychology, 37(1):62–83. Buraschi, A., Porchia, P., and Trojani, F. (2010). Correlation risk and optimal portfolio choice.

  13. Cai, T. T., Hu, J., Li, Y., and Zheng, X. (2020). High-dimensional minimum variance portfolio estimation based on high-frequency data. Journal of Econometrics, 214(2):482–494.

  14. Callot, L., Caner, M., Önder, A. Ö., and Ulaşan, E. (2021). A nodewise regression approach to estimating large portfolios. Journal of Business & Economic Statistics, 39(2):520–531.
    Paper not yet in RePEc: Add citation now
  15. Callot, L., Caner, M., Onder, O., and Ulacan, E. (2019). A nodewise regression approach to estimating large portfolios. Journal of Business & Economic Statistics, pages 1–12.

  16. Calvo-Pardo, H., Mancini, T., and Olmo, J. (2021). Granger causality detection in high-dimensional systems using feedforward neural networks. International Journal of Forecasting, 37(2):920–940.

  17. Campbell, R., Huisman, R., and Koedijk, K. (2001). Optimal portfolio selection in a value-at-risk framework. Journal of Banking and Finance, 25:1789–1804.

  18. Chen, J., Dai, G., and Zhang, N. (2020). An application of sparse-group lasso regularization to equity portfolio optimization and sector selection. Annals of Operations Research, 284(1):243–262.

  19. Chen, Y., Cheng, C., and Fan, J. (2021). Asymmetry helps: Eigenvalue and eigenvector analyses of asymmetrically perturbed low-rank matrices. The Annals of Statistics, 49(1):435–458.
    Paper not yet in RePEc: Add citation now
  20. Corsi, F., Lillo, F., Pirino, D., and Trapin, L. (2018). Measuring the propagation of financial distress with granger-causality tail risk networks. Journal of Financial Stability, 38:18–36.

  21. Csaki, F. (1970). A concise proof of sylvester’s theorem. Periodica Polytechnica Electrical Engineering (Archives), 14(2):105–112.
    Paper not yet in RePEc: Add citation now
  22. Diebold, F. X. and Yılmaz, K. (2014). On the network topology of variance decompositions: Measuring the connectedness of financial firms. Journal of Econometrics, 182(1):119–134.

  23. Diebold, F. X. and Yilmaz, K. (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1):57–66.

  24. Duffie, D. and Pan, J. (1997). An overview of value at risk. Journal of Derivatives, 4:7–49.
    Paper not yet in RePEc: Add citation now
  25. Duffie, D., Eckner, A., Horel, G., and Saita, L. (2009). Frailty correlated default.

  26. Econometrica, 88(4):1515–1551. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification.
    Paper not yet in RePEc: Add citation now
  27. Econometrica: Journal of the Econometric Society, pages 819–847. Nguyen, L. H., Chevapatrakul, T., and Yao, K. (2020). Investigating tail-risk dependence in the cryptocurrency markets: A lasso quantile regression approach. Journal of Empirical Finance, 58:333– 355.

  28. Elliott, M. and Golub, B. (2019). A network approach to public goods. Journal of Political Economy, 127(2):730–776.

  29. Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3):339–350.

  30. Engle, R. F., Ledoit, O., and Wolf, M. (2019). Large dynamic covariance matrices.

  31. Escanciano, J. C. and Hualde, J. (2019). Measuring asset market linkages: Nonlinear dependence and tail risk. Journal of Business & Economic Statistics, pages 1–25.
    Paper not yet in RePEc: Add citation now
  32. European Journal of Operational Research, 244(1):289–299. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7:77–91.
    Paper not yet in RePEc: Add citation now
  33. Fan, J., Liao, Y., and Shi, X. (2015). Risks of large portfolios. Journal of Econometrics, 186(2):367– 387.

  34. Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns.

  35. Gaivoronski, A. and Pflug, G. (2005). Value-at-risk in portfolio optimization: Properties and computational approach. Journal of Risk, 7(2):1–31.
    Paper not yet in RePEc: Add citation now
  36. Galeotti, A., Golub, B., and Goyal, S. (2020). Targeting interventions in networks. Econometrica, 88(6):2445–2471.

  37. Hale, G. and Lopez, J. A. (2019). Monitoring banking system connectedness with big data.

  38. Huber, K. (2018). Disentangling the effects of a banking crisis: evidence from german firms and counties. American Economic Review, 108(3):868–98.

  39. Huemer, M. and Kovitz, B. (2003). Causation as simultaneous and continuous.
    Paper not yet in RePEc: Add citation now
  40. Ibragimov, M. (2001). A method of calculating the spectral radius of a nonnegative matrix and its applications. Economic theory, 17(2):467–480.

  41. Ibragimov, R. and Walden, D. (2007). The limits of diversification when losses may be large.

  42. IEEE Transactions on Signal Processing, 39(5):1136–1145. Zhang, M.-H. (2008). Modelling total tail dependence along diagonals.

  43. Insurance: Mathematics and Economics, 42(1):73–80. Zhang, T. (2021). High-quantile regression for tail-dependent time series. Biometrika.

  44. Journal of Banking and Finance, 31:2551–2569. Jorion, P. (2007). Value at Risk. The New Benchmark for Managing Financial Risk, volume 81.
    Paper not yet in RePEc: Add citation now
  45. Journal of Business & Economic Statistics, 37(2):363–375. Engle, R. F. and Manganelli, S. (2004). Caviar: Conditional autoregressive value at risk by regression quantiles. Journal of Business & Economic Statistics, 22:367–381.

  46. Journal of Econometrics, 181(2):165–180. Adrian, T. and Brunnermeier, M. K. (2016). Covar. American Economic Review, 106(7):1705–41.

  47. Journal of Econometrics, 192(2):499–513. Hong, Y., Liu, Y., and Wang, S. (2009). Granger causality in risk and detection of extreme risk spillover between financial markets. Journal of Econometrics, 150(2):271–287.

  48. Journal of econometrics, 31(3):307–327. Bollerslev, T., Li, J., Patton, A. J., and Quaedvlieg, R. (2020). Realized semicovariances.

  49. Journal of Econometrics. Härdle, W. K., Wang, W., and Yu, L. (2016). Tenet: Tail-event driven network risk.

  50. Journal of Empirical Finance, 15(5):850–859. Ledoit, O., Wolf, M., et al. (2020). Analytical nonlinear shrinkage of large-dimensional covariance matrices. Annals of Statistics, 48(5):3043–3065.
    Paper not yet in RePEc: Add citation now
  51. Journal of Empirical Finance, 38:157–180. Phillips, P. (1982). A simple proof of the latent root sensitivity formula. Economics Letters, 9(1):57– 59.

  52. Journal of mathematical sociology, pages 113–120. Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures.
    Paper not yet in RePEc: Add citation now
  53. Journal of Multivariate Analysis, 138:104–126. Billio, M., Getmansky, M., Lo, A. W., and Pelizzon, L. (2012). Econometric measures of connectedness and systemic risk in the finance and insurance sectors. Journal of financial economics, 104(3):535– 559.

  54. Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, pages 33–50.
    Paper not yet in RePEc: Add citation now
  55. Koenker, R. and Xiao, Z. (2002). Inference on the quantile regression process. Econometrica, 70:1583– 1612.

  56. Krokhmal, P., Uryasev, S., and Palmquist, J. (2001). Portfolio optimization with conditional valueat -risk objective and constraints. Journal of Risk, 4(2):43–68.
    Paper not yet in RePEc: Add citation now
  57. Lamont, O. (1997). Cash flow and investment: Evidence from internal capital markets.

  58. Ledoit, O., Wolf, M., and Zhao, Z. (2019). Efficient sorting: A more powerful test for cross-sectional anomalies. Journal of Financial Econometrics, 17(4):645–686.

  59. Magnus, J. R. (1985). On differentiating eigenvalues and eigenvectors. Econometric Theory, pages 179–191.

  60. Maillet, B., Tokpavi, S., and Vaucher, B. (2015). Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach.

  61. Markowitz, H. (1956). The optimization of a quadratic function subject to linear constraints.

  62. McGee, R. and Olmo, J. (2020). Optimal characteristic portfolios. Available at SSRN.
    Paper not yet in RePEc: Add citation now
  63. McGraw-Hill. 3rd Edition. Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1):39–43.

  64. Mitchener, K. J. and Richardson, G. (2019). Network contagion and interbank amplification during the great depression. Journal of Political Economy, 127(2):000–000.

  65. Moreira, A. and Muir, T. (2017). Volatility-managed portfolios. The Journal of Finance, 72(4):1611– 1644.

  66. Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing.

  67. Olmo, J. (2021). Optimal portfolio allocation and asset centrality revisited. (forthcoming).

  68. Patton, A. J., Ziegel, J. F., and Chen, R. (2019). Dynamic semiparametric models for expected shortfall (and value-at-risk). Journal of Econometrics, 211(2):388–413.

  69. Peralta, G. and Zareei, A. (2016). A network approach to portfolio selection.

  70. Pozzi, F., Di Matteo, T., and Aste, T. (2013). Spread of risk across financial markets: better to invest in the peripheries. Scientific reports, 3:1665.
    Paper not yet in RePEc: Add citation now
  71. Scrucca, L. et al. (2013). Ga: a package for genetic algorithms in r. Journal of Statistical Software, 53(4):1–37.

  72. Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk.

  73. Stein, J. C. (1997). Internal capital markets and the competition for corporate resources.

  74. The American Economic Review, 67(2):116–126. Fissler, T., Ziegel, J. F., et al. (2016). Higher order elicitability and osband principle.
    Paper not yet in RePEc: Add citation now
  75. The Annals of Statistics, 44(4):1680–1707. Frongillo, R. and Kash, I. A. (2020). Elicitation complexity of statistical properties. Biometrika, xx(x):1–34.

  76. The Journal of Finance, 19(3):425–442. Shu, H., Nan, B., et al. (2019). Estimation of large covariance and precision matrices from temporally dependent observations. The Annals of Statistics, 47(3):1321–1350.
    Paper not yet in RePEc: Add citation now
  77. The Journal of Finance, 52(1):111–133. Van Mieghem, P. (2010). Graph spectra for complex networks. Cambridge University Press.
    Paper not yet in RePEc: Add citation now
  78. The Journal of Finance, 52(1):83–109. Ledoit, O. and Wolf, M. (2008). Robust performance hypothesis testing with the sharpe ratio.

  79. The Journal of Finance, 65(1):393–420. Cai, T., Liu, W., and Luo, X. (2011). A constrained l1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association, 106(494):594–607.
    Paper not yet in RePEc: Add citation now
  80. The Philosophical Quarterly, 53(213):556–565. Huttner, A., Mai, J.-F., and Mineo, S. (2016). Portfolio selection based on graphs: Does it align with markowitz-optimal portfolios? Dependence Modeling, 6(1):63–87.
    Paper not yet in RePEc: Add citation now
  81. Van Mieghem, P. (2014). Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. arXiv preprint arXiv:1401.4580.
    Paper not yet in RePEc: Add citation now
  82. Weidong, L., Olmo, J., and Abderrahim, T. (2021). Portfolio selection under systemic risk. (forthcoming) .
    Paper not yet in RePEc: Add citation now
  83. White, H., Kim, T.-H., and Manganelli, S. (2015). Var for var: Measuring tail dependence using multivariate regression quantiles. Journal of Econometrics, 187(1):169–188.

  84. Wu, G. and Xiao, Z. (2002). An analysis of risk measures. Journal of Risk, 4(4):53–75.
    Paper not yet in RePEc: Add citation now
  85. Yang, B., Hafner, C., Liu, G., Long, W., et al. (2021). Semiparametric estimation and variable selection for single-index copula models. Journal of Applied Econometrics (forthcoming).

  86. Yu, K.-B. (1991). Recursive updating the eigenvalue decomposition of a covariance matrix.
    Paper not yet in RePEc: Add citation now
  87. Ziegel, J. F. (2016). Coherence and elicitability. Mathematical Finance, 26(4):901–918.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Canonical Portfolios: Optimal Asset and Signal Combination. (2022). Tan, Vincent ; Zohren, Stefan ; Firoozye, Nick.
    In: Papers.
    RePEc:arx:papers:2202.10817.

    Full description at Econpapers || Download paper

  2. Dynamic Econometrics in Action: A Biography of David F. Hendry. (2021). Ericsson, Neil.
    In: International Finance Discussion Papers.
    RePEc:fip:fedgif:1311.

    Full description at Econpapers || Download paper

  3. Optimal Portfolio Choice and Stock Centrality for Tail Risk Events. (2021). Katsouris, Christis.
    In: Papers.
    RePEc:arx:papers:2112.12031.

    Full description at Econpapers || Download paper

  4. Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices. (2020). Zagidullina, Aygul ; Pohlmeier, Winfried ; Daniele, Maurizio.
    In: Working Paper series.
    RePEc:rim:rimwps:20-03.

    Full description at Econpapers || Download paper

  5. High-dimensional covariance matrix estimation. (2020). Lam, Clifford.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:101667.

    Full description at Econpapers || Download paper

  6. Large Non-Stationary Noisy Covariance Matrices: A Cross-Validation Approach. (2020). , Vincent ; Vincent, ; Zohren, Stefan.
    In: Papers.
    RePEc:arx:papers:2012.05757.

    Full description at Econpapers || Download paper

  7. The power of (non-)linear shrinking: a review and guide to covariance matrix estimation. (2019). Wolf, Michael ; Ledoit, Olivier.
    In: ECON - Working Papers.
    RePEc:zur:econwp:323.

    Full description at Econpapers || Download paper

  8. A multiple testing approach to the regularisation of large sample correlation matrices. (2019). Pesaran, M ; Bailey, Natalia ; Smith, Vanessa L.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:208:y:2019:i:2:p:507-534.

    Full description at Econpapers || Download paper

  9. Analytical nonlinear shrinkage of large-dimensional covariance matrices. (2018). Wolf, Michael ; Ledoit, Olivier.
    In: ECON - Working Papers.
    RePEc:zur:econwp:264.

    Full description at Econpapers || Download paper

  10. Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices. (2018). Zagidullina, Aygul ; Pohlmeier, Winfried ; Daniele, Maurizio.
    In: Working Paper Series of the Department of Economics, University of Konstanz.
    RePEc:knz:dpteco:1807.

    Full description at Econpapers || Download paper

  11. A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data. (2018). Feng, Phoenix ; Lam, Clifford.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:88375.

    Full description at Econpapers || Download paper

  12. A nonparametric eigenvalue-regularized integrated covariance matrix estimator for asset return data. (2018). Lam, Clifford ; Feng, Phoenix.
    In: Journal of Econometrics.
    RePEc:eee:econom:v:206:y:2018:i:1:p:226-257.

    Full description at Econpapers || Download paper

  13. Nonlinear shrinkage estimation of large integrated covariance matrices. (2017). Lam, Clifford ; Hu, Charlie ; Feng, Phoenix.
    In: Biometrika.
    RePEc:oup:biomet:v:104:y:2017:i:2:p:481-488..

    Full description at Econpapers || Download paper

  14. Testing for Differences in Path Forecast Accuracy: Forecast-Error Dynamics Matter. (2017). Martinez, Andrew.
    In: Working Papers (Old Series).
    RePEc:fip:fedcwp:1717.

    Full description at Econpapers || Download paper

  15. Nonlinear shrinkage estimation of large integrated covariance matrices. (2017). Hu, Charlie ; Feng, Phoenix ; Lam, Clifford.
    In: LSE Research Online Documents on Economics.
    RePEc:ehl:lserod:69812.

    Full description at Econpapers || Download paper

  16. Economic forecasting in theory and practice: An interview with David F. Hendry. (2017). Ericsson, Neil.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:2:p:523-542.

    Full description at Econpapers || Download paper

  17. Evaluating multi-step system forecasts with relatively few forecast-error observations. (2017). Martinez, Andrew ; Hendry, David.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:33:y:2017:i:2:p:359-372.

    Full description at Econpapers || Download paper

  18. Evaluating Multi-Step System Forecasts with Relatively Few Forecast-Error Observations. (2016). Martinez, Andrew ; Hendry, David.
    In: Economics Series Working Papers.
    RePEc:oxf:wpaper:784.

    Full description at Econpapers || Download paper

  19. Economic Forecasting in Theory and Practice: An Interview with David F. Hendry. (2016). Ericsson, Neil.
    In: Working Papers.
    RePEc:gwc:wpaper:2016-012.

    Full description at Econpapers || Download paper

  20. Economic Forecasting in Theory and Practice : An Interview with David F. Hendry. (2016). Ericsson, Neil.
    In: International Finance Discussion Papers.
    RePEc:fip:fedgif:1184.

    Full description at Econpapers || Download paper

  21. A Multiple Testing Approach to the Regularisation of Large Sample Correlation Matrices. (2014). Pesaran, M ; Bailey, Natalia ; Smith, Vanessa L..
    In: CESifo Working Paper Series.
    RePEc:ces:ceswps:_4834.

    Full description at Econpapers || Download paper

  22. A multiple testing approach to the regularisation of large sample correlation matrices. (2014). Pesaran, M ; Bailey, Natalia ; Smith, Vanessa .
    In: Cambridge Working Papers in Economics.
    RePEc:cam:camdae:1413.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-13 11:43:58 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.