Ahmadi, M. , Behmiri, N. B. , & Manera, M. (2020). The theory of storage in the crude oil futures market, the role of financial conditions. Journal of Futures Markets, 40, 1160–1175. https://doi.org/10.1002/fut.22113.
Aloui, R. , Hammoudeh, S. , & Nguyen, D. K. (2013). A time‐varying copula approach to oil and stock market dependence: The case of transition economies. Energy Economics, 39, 208–221. https://doi.org/10.1016/j.eneco.2013.04.012.
Alquist, R. , Ellwanger, R. , & Jin, J. (2020). The effect of oil price shocks on asset markets: Evidence from oil inventory news. Journal of Futures Markets, 40, 1212–1230. https://doi.org/10.1002/fut.22096.
Bampinas, G. , & Panagiotidis, T. (2017). Oil and stock markets before and after financial crises: A local Gaussian correlation approach. Journal of Futures Markets, 37, 1179–1204. https://doi.org/10.1002/fut.21860.
- Čech, F. , & Baruník, J. (2019). Panel quantile regressions for estimating and predicting the value‐at‐risk of commodities. Journal of Futures Markets, 39, 1167–1189. https://doi.org/10.1002/fut.22017.
Paper not yet in RePEc: Add citation now
Chatrath, A. , Miao, H. , Ramchander, S. , & Wang, T. (2016). An examination of the flow characteristics of crude oil: Evidence from risk‐neutral moments. Energy Economics, 54, 213–223. https://doi.org/10.1016/j.eneco.2015.12.005.
Chichernea, D. , Huang, K. , & Petkevich, A. (2019). Does maturity matter? The case of treasury futures volume. Journal of Futures Markets, 39, 1301–1321. https://doi.org/10.1002/fut.22039.
- China Stock Market Accounting Research; April 8, 2005 to April 30, 2020; China Securities Index 300 constituent stock data. https://www.gtarsc.com.
Paper not yet in RePEc: Add citation now
Demange, G. (2018). Contagion in financial networks: A threat index. Management Science, 64, 955–970. https://doi.org/10.1287/mnsc.2016.2592.
Driesprong, G. , Jacobsen, B. , & Maat, B. (2008). Striking oil: Another puzzle? Journal of Financial Economics, 89, 307–327. https://doi.org/10.1016/j.jfineco.2007.07.008.
- DuMouchel, W. H. (1983). Estimating the stable index α in order to measure tail thickness: A critique. Annals of Statistics, 11, 1019–1031. https://doi.org/10.1214/aos/1176346318.
Paper not yet in RePEc: Add citation now
- Forbes, K. J. , & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. The Journal of Finance, 57, 2223–2261. https://doi.org/10.1111/0022-1082.00494.
Paper not yet in RePEc: Add citation now
- Gates, B. (2020). Responding to Covid‐19‐A once‐in‐a‐century pandemic? The New England Journal of Medicine, 382, 1677–1679. https://doi.org/10.1056/NEJMp2003762.
Paper not yet in RePEc: Add citation now
Gogineni, S. (2010). Oil and the stock market: An industry level analysis. Financial Review, 45, 995–1010. https://doi.org/10.1111/j.1540-6288.2010.00282.x.
Gong, X. L. , Liu, X. H. , & Xiong, X. (2019). Measuring tail risk with GAS time varying copula, fat tailed GARCH model and hedging for crude oil futures. Pacific‐Basin Finance Journal, 55, 95–109. https://doi.org/10.1016/j.pacfin.2019.03.010.
Horta, P. , Lagoa, S. , & Martins, L. (2016). Unveiling investor‐induced channels of financial contagion in the 2008 financial crisis using copulas. Quantitative Finance, 16, 625–637. https://doi.org/10.1080/14697688.2015.1033447.
Isleimeyyeh, M. (2020). The role of financial investors in determining the commodity futures risk premium. Journal of Futures Markets, 40, 1375–1397. https://doi.org/10.1002/fut.22122.
- Jayech, S. (2016). The contagion channels of July‐August‐2011 stock market crash: A DAG‐copula based approach. European Journal of Operational Research, 249, 631–646. https://doi.org/10.1016/j.ejor.2015.08.061.
Paper not yet in RePEc: Add citation now
Koliai, L. (2016). Extreme risk modeling: An EVT‐pair‐copulas approach for financial stress tests. Journal of Banking & Finance, 70, 1–22. https://doi.org/10.1016/j.jbankfin.2016.02.004.
Lien, D. , Lee, H. T. , & Sheu, H. J. (2018). Hedging systematic risk in the commodity market with a regime‐switching multivariate rotated generalized autoregressive conditional heteroskedasticity model. Journal of Futures Markets, 38, 1514–1532. https://doi.org/10.1002/fut.21959.
- Lin, A. , Shang, P. , & Zhao, X. (2012). The cross‐correlations of stock markets based on DCCA and time‐delay DCCA. Nonlinear Dynamics, 67, 425–435. https://doi.org/10.1007/s11071-011-9991-8.
Paper not yet in RePEc: Add citation now
- Luo, C. , Xie, C. , Yu, C. , & Xu, Y. (2015). Measuring financial market risk contagion using dynamic MRS‐Copula models: The case of Chinese and other international stock markets. Economic Modelling, 51, 657–671. https://doi.org/10.1016/j.econmod.2015.09.021.
Paper not yet in RePEc: Add citation now
Mensi, W. , Hammoudeh, S. , Shahzad, S. J. H. , & Shahbaz, M. (2017). Modeling systemic risk and dependence structure between oil and stock markets using a variational mode decomposition‐based copula method. Journal of Banking & Finance, 75, 258–279. https://doi.org/10.1016/j.jbankfin.2016.11.017.
Miao, H. , Ramchander, S. , Wang, T. , & Yang, D. (2017a). Role of index futures on Chinaas stock markets: Evidence from price discovery and volatility spillover. Pacific‐Basin Finance Journal, 44, 13–26. https://doi.org/10.1016/j.pacfin.2017.05.003.
Miao, H. , Ramchander, S. , Wang, T. , & Yang, D. (2017b). Influential factors in crude oil price forecasting. Energy Economics, 68, 77–88. https://doi.org/10.1016/j.eneco.2017.09.010.
Miao, H. , Ramchander, S. , Wang, T. , & Yang, J. (2018). The impact of crude oil inventory announcements on prices: Evidence from derivatives markets. Journal of Futures Markets, 38, 38–65. https://doi.org/10.1002/fut.21850.
- Mokni, K. (2020). Time‐varying effect of oil price shocks on the stock market returns: Evidence from oil‐importing and oil‐exporting countries. Energy Reports, 6, 605–619. https://doi.org/10.1016/j.egyr.2020.03.002.
Paper not yet in RePEc: Add citation now
- Nath, H. B. , & Brooks, R. D. (2020). Investor‐herding and risk‐profiles: A state‐space model‐based assessment. Pacific‐Basin Finance Journal, 62, 101383. https://doi.org/10.1016/j.pacfin.2020.101383.
Paper not yet in RePEc: Add citation now
Ng, L. , & Wu, F. (2007). The trading behavior of institutions and individuals in Chinese equity markets. Journal of Banking & Finance, 31, 2695–2710. https://doi.org/10.1016/j.jbankfin.2006.10.029.
Omura, A. , & Todorova, N. (2019). The quantile dependence of commodity futures markets on news sentiment. Journal of Futures Markets, 39, 818–837. https://doi.org/10.1002/fut.22010.
Qu, H. , Wang, T. , Zhang, Y. , & Sun, P. (2019). Dynamic hedging using the realized minimum‐variance hedge ratio approach—Examination of the CSI 300 index futures. Pacific‐Basin Finance Journal, 57 9, 101048. https://doi.org/10.1016/j.pacfin.2018.08.002.
Rodriguez, J. C. (2007). Measuring financial contagion: A copula approach. Journal of Empirical Finance, 14, 401–423. https://doi.org/10.1016/j.jempfin.2006.07.002.
Silvennoinen, A. , & Thorp, S. (2016). Crude oil and agricultural futures: An analysis of correlation dynamics. Journal of Futures Markets, 36, 522–544. https://doi.org/10.1002/fut.21770.
Sim, N. , & Zhou, H. (2015). Oil prices, US stock return, and the dependence between their quantiles. Journal of Banking & Finance, 55, 1–8. https://doi.org/10.1016/j.jbankfin.2015.01.013.
- Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges. Publications de l'Institut Statistique de l'Université de Paris, 8, 229–231.
Paper not yet in RePEc: Add citation now
Tsai, C. L. (2015). How do US stock returns respond differently to oil price shocks pre‐crisis, within the financial crisis, and post‐crisis? Energy Economics, 50, 47–62. https://doi.org/10.1016/j.eneco.2015.04.012.
- U.S. Energy Information Administration; April 8, 2005 to April 30, 2020; Oil price data. https://www.eia.gov.
Paper not yet in RePEc: Add citation now
Wang, T. , & Dyer, J. S. (2012). A copulas‐based approach to modeling dependence in decision trees. Operations Research, 60, 225–242. https://doi.org/10.1287/opre.1110.1004.
Wang, Y. C. , Wu, J. L. , & Lai, Y. H. (2013). A revisit to the dependence structure between the stock and foreign exchange markets: A dependence‐switching copula approach. Journal of Banking & Finance, 37, 1706–1719. https://doi.org/10.1016/j.jbankfin.2013.01.001.
Wen, X. , Wei, Y. , & Huang, D. (2012). Measuring contagion between energy market and stock market during financial crisis: A copula approach. Energy Economics, 34, 1435–1446. https://doi.org/10.1016/j.eneco.2012.06.021.
Wong, J. B. (2021). Stock market reactions to different types of oil shocks: Evidence from China. Journal of Futures Markets, 41, 179–193. https://doi.org/10.1002/fut.22176.
Wong, J. B. , & Zhang, Q. (2020). Impact of international energy prices on China's industries. Journal of Futures Markets, 40, 722–748. https://doi.org/10.1002/fut.22090.
Xu, Y. , Lien, D. (2020). Optimal futures hedging for energy commodities: An application of the GAS model. Journal of Futures Markets, 40, 1090–1108. https://doi.org/10.1002/fut.22118.
Yang, J. , & Zhou, Y. (2020). Return and volatility transmission between China's and international crude oil futures markets: A first look. Journal of Futures Markets, 40, 860–884. https://doi.org/10.1002/fut.22103.
Yang, Z. , & Zhou, Y. (2017). Quantitative easing and volatility spillovers across countries and asset classes. Management Science, 63, 333–354. https://doi.org/10.1287/mnsc.2015.2305.
Ye, W. , Luo, K. , & Liu, X. (2017). Time‐varying quantile association regression model with applications to financial contagion and VaR. European Journal of Operational Research, 256, 1015–1028. https://doi.org/10.1016/j.ejor.2016.07.048.
Zhang, G. , & Liu, W. (2018). Analysis of the international propagation of contagion between oil and stock markets. Energy, 165, 469–486. https://doi.org/10.1016/j.energy.2018.09.024.
Zhu, H. , Guo, Y. , You, W. , & Xu, Y. (2016). The heterogeneity dependence between crude oil price changes and industry stock market returns in China: Evidence from a quantile regression approach. Energy Economics, 55, 30–41. https://doi.org/10.1016/j.eneco.2015.12.027.