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Abstract. This paper describes our experience in processor/threads 
synchronization using the POSIX API standard for MPSoC virtual applications 
prototyping. Spin-Lock (Binary Semaphore) implementations on general 
purpose CPU are based on an atomic read and (conditional) write of a shared 
variable. In modern multiprocessor implementations, these operations occur as 
dependent pairs of conditional instructions, such as load linked and store 
conditional. We present and discuss how a hardware semaphore could be a 
more efficient mechanism for processor/threads synchronisation that is CPU 
family independent. This mechanism has been implemented for an SMP 
Operating System with a validation on a top of a multi-ARM software platform. 
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1   Introduction 

Embedded system is application-oriented special computer system which is 
scalable on both software and hardware. It can satisfy the strict requirement of 
functionality, reliability, cost, volume, and power consumption of the particular 
application. With rapid development of IC design and manufacture, CPUs became 
cheap. Lots of consumer electronics have embedded CPU and thus became embedded 
systems. For example, PDAs, cell phones, point-of-sale devices, VCRs, industrial 
robot control, or even your toasters can be embedded system. There is more and more 
demand on the embedded system market. Some report expects that the demand on 
embedded CPUs is 10 times as large as general purpose PC CPUs (GPP). 

The emerging trend for multimedia applications on mobile terminals, combined 
with a decreasing time-to-market and a multitude of standards have created the need 
for flexible and scalable computing platforms that are capable of providing 
considerable (application specific) computational performance at a low cost and a low 
energy budget. 

Hence, in recent years, the first multiprocessor system-on-chip components have 
emerged. These platforms contain multiple heterogeneous, flexible processing 
elements, core, a memory hierarchy and I/O components. All these components are 
linked to each other by a flexible on-chip interconnect structure. These architectures 
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meet the performance needs of contemporary and future multimedia applications, 
while limiting the power consumption. 

MPSoCs embedded software designers are continually challenged to provide 
increased computational power for today’s multimedia and telecommunication 
applications to meet tighter system requirements at ever-improving price/performance 
ratios. In this work we use the MPSoC centralized Operating System (OS) approach, 
to design a Symmetric Multiprocessor (SMP) operating system based on POSIX API 
standard. Once the OS architecture is frozen, the designer has some choice of building 
the different OS services (functions) parts, which could have software based or a 
hardware-based (hardware) implementation. The main contribution of this work is to 
validate an SMP (Symmetric MultiProcrssor) Operating System named Mutek on a 
multiprocessor software platform. The rest of the paper is organized as follows: 
section 2 details the Prototyping flow using POSIX-based Operating System and the 
virtual prototyping flow using an SMP OS. Section 3 describes the Mutek Operating 
System. Section 4 gives an insight of implemented simulation tool MaxSim, while 
section 5 concludes the paper. 

2   Virtual Prototyping Flow using POSIX-Complaint Operating 
System 

The main difficulties when designing multiprocessor system on chip (MPSoC) is 
the parallelization of sequential code and mapping of functions on the multiprocessor 
architecture. This is partially true and explains recent studies such as parallel 
programming models [1]. 

2.1 POSIX multithreads programming model 

POSIX programming model is expedient for describing multi-thread embedded 
software. The POSIX standard can greatly increase the portability of applications and 
target several prototyping platforms. However, the desired application to prototype 
and the configuration architecture of the platform are captured separately; the design 
procedures adapt the application to port it onto the platform architecture to realize the 
final implementation [4]. In reality this mind-set process includes an integration step 
when platform specificities need to be abstracted and embedded software has to be 
adapted. That is called hardware/software integration. This process requires the 
development of HAL parts; since it is not obvious that an MPSoC’s embedded SW 
that runs onto one configuration platform architecture will evidently run onto another 
one. Consequently each MPSoC’s embedded software may have its own HAL API 
implementation, reflecting the specificities of each configuration of the platform 
architecture (Memory map, processors type, multiprocessor booting, commutation 
…). 
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2.2 Hardware Abstraction Layer (HAL) 

MPSoC’s embedded software is divided in several parts: Application, Middleware, 
OS, and Hardware Abstraction Layer code (Figure 1). The application is a set of 
concurrent threads that synchronize, exchange data and will be distributed 
dynamically/statically on several computing CPUs across a multiprocessor OS. The 
Middleware consist in communication libraries. In practice, OSs are structured in two 
parts: SW code which depends on the HW architecture (HAL) and SW code which is 
independent. 
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Figure 1: MPSoC's Embedded SW 

The Hardware Abstraction Layer (HAL) concept is introduced to exactly talk about 
the low level programming practice of MPSoC’s embedded software [6]. The HAL 
parts include those “low level” software functionalities whose implementations depend 
directly upon the underlying hardware platform architecture (Hardware-dependent 
Software (HdS) in other analogies). This includes also device drivers, DSP-specific 
algorithms, interrupt management, context related operations, semaphores and so on.  

Our paper implements PVP parallel virtual prototype modeling techniques 
allowing the SW prototype implementation in parallel with HW prototype 
implementation refinement of the SW VP and HW VP is done by use a standard 
abstraction for the software that “sits directly on top” of the hardware. 

2.3   Hardware/Software integration flow 

The conventional design flow is that the HW architecture is designed first, and then 
the SW design is performed based on the fixed HW architecture. In terms of design 
cycle, this practice takes a long design cycle since the SW and HW design steps are 
sequential. 

The PVP concept works on the disadvantages of such low-level programming 
practices by dividing the VP design in to two parallel VP : Hardware VP design and 
Software VP design  having embedded software code in two parts: code that depends 
on the hardware architecture (the HdS) and code that is implementation independent 
(the hardware-independent software). 

The hardware-independent software comprises application, middle ware, and 
operating system software. We assume that the application software comprises a set 
of concurrent tasks and the middle ware software represents dedicated communication 
libraries. The operating system software provides a useful abstraction interface 
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between applications and target architectures by simplifying the control code required 
to coordinate processes.  

 
 

Figure 2: SoC Integration flow 
 
 

In this section we present the MPSoC design flow from PVP model as show in 
(Figure 2), The Hardware prototype is designed from a component library composed 
of processors, memories, and communication structures where processors are 
modeled by cycle accurate processor model. Also the modeling peripheral 
components such as timers, interrupt controllers make possible the development of 
hardware-dependent software (HdS).  After hardware designing, Functional validation 
comes the explicit mapping of the code in the different memories available in the 
architecture. 

In the Software prototype (we used Mutek OS) the application and the source code 
can be parameterized in a number of ways through the use of pre-processor variable 
definitions within the code. Then the libraries have to compile for specific target 
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architecture then the application code linked to the software libraries in order to make 
an ELF file that can be used to boot the platform and run the application code. 

3  Implementation 

3.1   Software Architecture 

POSIX “Portable Operating System Interface" is the collective name of a family 
of related standards specified by the IEEE to define the application programming 
interface (API) for software compatible with variants of the Unix operating system, 
although the standard can apply to any operating system. 

An application programming interface (API) is a source code interface that an 
operating system or library provides to support requests for services to be made of it 
by computer programs. Mutek operating system is a lightweight kernel that proposes 
an implementation of the POSIX threads as API for multiprocessor platforms with 
shared memory. The Mutek operating system is available as part of the DISYDENT 
Open Embedded System Development Environment [2, 3]. 

The Mutek kernel uses a monolithic architecture in which both the operating 
system and application code are statically linked at compile time. The Mutek source 
code can be parameterized in a number of ways through the use of pre-processor 
variable definitions within the code. Once the libraries have been compiled for 
specific target architecture the application code can be linked to the software libraries 
in order to make an ELF file that can be used to boot the platform and run the 
application code. 

Mutek uses a flat memory model running in physical address mode. The 
application code is run within the same memory address space as the kernel services 
thus allowing a complete control over the memory allocation of the objects in 
exchange for the memory protection mechanism that are usually available on more 
complex systems. The linker script configuration file (ldscript) must be explicitly 
given during the linking process. This file defines the memory mapping of all objects 
and sections used within the compiled code. 

The Mutek functionalities are separated into the following libraries: 
–  libhandler: platform specific code. The library proposes a hardware 

abstraction layer on top of which all the Mutek functionalities are built. 
This library contains the platform specific assembly source code. 

–  libpthread: Posix thread implementation that conforms to the Posix. 
–  libc: tiny libc library that can be used by application code. 
–  lcmomo, lmalloc: Disydent Process Network library. This library proposes 

communication channel abstraction that can be used to hide hardware and 
software communications behind a unified fifo-based communication 
framework. 

Mutek is an open source project that implements a POSIX compliant 
multiprocessor kernel [5]. Its architecture is depicted in Figure . 
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Figure 3: Mutek Architecture 

3.1.1 Scheduler  

The scheduler manages several lists of threads. It may be shared by all processors 
(SMP for Symmetrical Multi-Processor). In the SMP scheduler organization, there is a 
unique scheduler shared by all processors and protected by a lock. The different 
threads can run on any processor, which leads to task migration. 

3.1.2 Kernel protection and thread Migration 

The access to the scheduler must be performed through critical section, and under 
the protection of locks. Lock granularity is one major player in determining the balance 
between the overhead introduced by the locking mechanism and the opportunity to 
increase parallelism among different processors.  

The SMP version of Mutek allows thread migration. The term migration is related 
to the ability of an operating system to resume a job on another processor after pre-
emption. Intuitively when a CPU finishes the threads currently allocated on it for 
scheduling, it can resume the execution of a pre-empted thread that was previously 
executed on another processor. In that way, the system is dynamically balanced, 
reducing the mean response time of the system. 

3.1.3 Thread synchronization  

Synchronization is required whenever shared data need to be accessed. In Mutek, 
this is done using different primitives: Spin-Lock, Mutual exclusion locks, condition 
variables and semaphores. 

The binary semaphore is the lowest level Mutual exclusion object. Thread waiting 
for a Spin-Lock continually accesses the element and do not return until they grab it. It 
is an active wait element. 

A Mutual exclusion lock (Mutex) allows excusive access to shared resources such 
as global data. Threads attempting to access an object locked by a Mutex will be 
blocked until the thread holding the object releases it. 



 7 

Using condition variables, a thread can wait until (or indicate that) a predicate 
becomes true. A condition variable requires a Mutex to protect the data associated with 
the predicate. 

In POSIX.1b, named and unnamed semaphores have been “tuned” specifically for 
threads. The semaphore is initialized to a certain value and decremented. Threads may 
wait to acquire a semaphore. If the current value of the semaphore is greater than 0, it 
is decremented and the wait call returns. If the value is 0 or less, the thread is blocked 
until the semaphore is available. 

3.1.4 Processor identification number  

Processors generally provide a specialized register allowing their identification 
within the system. Each processor is assigned a number at boot time. This 
identification number is needed, for instance, at boot time, since some start-up actions 
should be done only once, such as clearing the Blank Static Storage (BSS) and creating 
the scheduler. 

3.2 Hardware Architecture 

We used a software architecture model based on MaxSim environment. MaxSim 
[7] is an environment for System-Level Simulation and Design based in SystemC. 
The designer can construct a virtual prototype by assembling the system from a 
component library. This component library is composed of processors, buses, 
memories, interrupt controllers and others. Therefore, the library can be extended 
with custom components described by the designer.   
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           Figure 4: ARM Based Architecture 

The computational model of the MaxSim components is based in a cycle-based 
engine. In this kind of component the behavior is evaluated only in the clock edges. 
Behavior is described in two methods, communicate and update. In the communicate 
method all communication between the components are performed, whereas in the 
update method the communication realized are committed in the shared resources. 
This way of modeling leads to high simulation speeds, enabling the fast validation of 
the architecture. Figure 4 shows our multiprocessor architecture model with two 
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ARM processors, AMBA bus and a global memory; also we can add several HW 
components written in SystemC at different level of abstraction (RTL or TLM). 

3.3.   Software Mapping 

The boot code sequence provides the system initialization, after resetting 
processors jump to a specific shared address alias in the global memory address space 
which is set for starting the first initialization routine inside the operating system 
kernel (__init) (Figure 5). The binary (.ELF) image is loaded on the global of the 
multiprocessor architecture, on a specific address. 
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Figure 5: Memory mapping 

3.4 Synchronization implementation 

3.4.1 CPU-based Spin-Lock implementation 

In MPSoC systems, the only non blocking synchronization primitive that is used to 
ensure atomic access to shared objects is the Spin-Lock. Binary Spin-Lock semaphore 
implementations on general purpose CPU's are based an atomic read and (conditional) 
write of a shared variable.  

// semaddr in R0 
void SEM_LOCK (unsigned int semaddr) {  
__asm {     
  MVN R2, #0         // load the value (-1)  
Tryagain: SWP R3, R2, [R0]  // Atomic load and store  
  CMN R3, #1  // did this succeed? 
  BEQ Tryagain   // no – try again  
 }; //yes – we have the lock, so Branch in R14  
}  
void SPIN_UNLOCK (unsigned int semaddr) {  
__asm { 

  MOV R2, #0  //load the ‘free’ value (0) 
  STR R2, [R0]  //open the lock 

 };  
} 

Figure 6: CPU-based SEM-LOCK implementation for ARM processor 
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In modern multiprocessor implementations, these operations occur as dependent 
pairs of conditional instructions, such as load linked and store conditional [7]. These 
instructions have evolved from the original test and set, and compare and swap type 
instructions. These existing mechanisms can be integrated in shared memory 
multiprocessors (SMP) to provide synchronization between applications running on 
multiple homogeneous CPUs. Figure 6 shows the implementation of the different 
functions (SEM_LOCK & SPIN_UNLOCK) using the specific swap (SWP) 
multiprocessor atomic instruction. SEM_LOCK is used to check the Spin-Lock 
variable and SPIN_UNLOCK to release it. 

In the ARM based architecture we use the swap (SWP) ARM instruction, and 
“lock” the system bus for Spin-Lock implementation. A processor could hold the entire 
bus until atomic load and store (SWP) instruction completion of the “semaddr” global 
variable, disallowing all other processors.  Clearly, implementing Spin-Lock with such 
mechanisms, which lock the system bus until completion, was offensive for system 
performance. In order to eliminate the need to lock the system bus for long periods of 
time, the new ARM instruction set (ex: ARM11) introduced two new instructions load-
exclusive (LDREX) and store-exclusive (STREX) which take advantage of an 
exclusive monitor in memory. These instructions require additional control logic 
within the CPU that interfaces into the memory coherency policy of the system. While 
semantically correct, these existing mechanisms introduce significant complexity in the 
system design that is not easily portable for all CPU family, when creating 
heterogeneous multiprocessor SoC [8]. 

3.4.2 Hardware-based synchronization 

We can use a hardware component to implement more efficient synchronization 
mechanisms that are CPU family independent, and require no additional control logic 
(exclusive monitor). As such, this new mechanisms are easily portable across shared 
and distributed memory multiprocessor configurations. Thus, the architecture can 
implement synchronisation that does not lock the system bus that grants other 
processors or threads access to the memory system. Also this approach is suitable to 
none centralized interconnect where CPU can not snoop the bus for cache coherency. 
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Figure 7: MaxSim based Architecture 
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3.4.3 Semaphore Engine 

The Semaphore Engine defined uses a standard read of a memory mapped register 
"Sem_addr". We define a simple control structure that updates the register after a read 
operation. Figure 8 shows the implementation of the semaphore engine component. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
void SEM_LOCK (unsigned int semaddr) { 

while (Sem_addr !=0); 
} 

void SPIN_UNLOCK (unsigned int semaddr) { 
Sem_addr =1; 

} 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Figure 8: CPU-independent Spin-Lock implementation 

The basic semantics of all SEM_LOCK & SEM_UNLOCK API's for accessing the 
lock are implemented identically for all system processors (Figure ). 

We use a finite state machine (FSM) to control the 
“Sem_addr” register.  

Figure 9 shows the four states of the FSM (EM_IDLE, EM_0, EM_1 and EM_2). 
In EM_Idle state we initialize the "Sem_addr" register (Sem_addr = 0). To request the 
Sem-Lock variable, the SEM_LOCK API first reads the "Sem_addr" register (EM_0). 
When the "Sem_addr" value is read, if the Spin-Lock is free (Sem_addr =0), then the 
control logic implemented as a state machine within the Sem-Lock Engine IP updates 
the "Sem_addr" register (Sem_addr <=1) (EM_1). If the Spin-Lock is currently locked, 
then the control logic performs no update. After the first access, the lock is only freed 
when a SEM_UNLOCK API writes into the "Sem_addr" register (EM_2). 
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Figure 9: Sem-Engine Engine controller 

4 Results and performance analysis 

4.1 Discussion  

As well to functional tests, tests were performed to quantify the performance of the 
hardware Semaphore-Engine. This was in response to our concern that the speed of the 
hardware implementation could guide to more performance than software one. The test 
sequence was a SEM_LOCK (request) and SEM_UNLOCK (release) (Figure 10). 
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Figure 10: Semaphore performance request and release 

 
The software Spin-Lock implementation average access time was 162 clock cycles, 

compared to 54 clock cycles for the hardware implementation one, yielding a 3 
average performance access ratio.  

The operating system is the most fundamental software layer in the MPSoC’s 
embedded software, by simplifying control code required to coordinate processes and 
abstracting a wide range of high-level system services and device-specific 
requirements into a generic set of interfaces through which both application and system 
programs access specific operating- system capabilities. It provides a software 
adaptation between the application and the hardware architecture. Creation of an OS 
services based on hardware component, which eliminates the difference between 
software and hardware from the developer’s point of view, requires a hardware-
software co-design of portions of the OS to extend system services across the 
hardware-Software boundary.  

One of the most attractive goals of hardware/software co-design of some OS 
services, in the MPSoC’s embedded software design framework, is to augments the 
portability of applications on several mixed multiprocessor architecture by the based 
hardware implementation of the entire OS services which are CPU dependent. This 
hardware-based design of some OS services which is CPU dependent such as 
synchronization, processor identification, and interrupts controller promise to 
overcome the Hardware Abstraction Layer (Hardware dependent Software parts) 
design problems. An extremely important goal for our hardware-software co-design of 
operating system services is to create an HAL part that will be portable on several 
platforms and for each platform/configurable architecture couple. 

4.2 Conclusion 

Advances in technology provide new commercial simulation platform that combine 
a general purpose CPUs, buses, memories. These new environments are a significant 
step toward fast validation of MPSoC design. We have used one of these simulation 
platforms (MaxSim) to study and report the HW/SW interfacing in MPSoC design. 
This study is a stage to understand the hardware/software integration step in MPSoC 
system design. We have presented an hardware mechanism for processors/threads 
synchronization for a multithreaded POSIX compliant kernel named Mutek. This 
operating system co-design approach proves that there are parts of OS which can be 
implemented in HW. This HW implementation of some OS services, in the context of 
Hardware Abstraction Layer (HAL) design is a motivation for us to investigate in 
using FPGA to implement a unified model for all those parts which tightly dependent 
on the platform architecture (particularly CPU). When complete, this FPGA-Based 
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unified model will enable these new reconfigurable single-chip platforms to be 
accessible by a much broader community of system programmers, and provide 
increases in MPSoC’s embedded software performance. 
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