Nothing Special   »   [go: up one dir, main page]

CERN Accélérateur de science

CERN Document Server 4 notices trouvées  La recherche a duré 0.56 secondes. 
1.
Review of particle physics / Particle Data Group Collaboration
The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,717 new measurements from 869 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons [...]
2024 - 2382 p. - Published in : Phys. Rev. D 110 (2024) 030001 Fulltext: PDF;
2.
Workshop on a future muon program at FNAL / Corrodi, S. (Argonne) ; Oksuzian, Y. (Argonne) ; Edmonds, A. (Boston U.) ; Miller, J. (Boston U.) ; Tran, H.N. (Boston U.) ; Bonventre, R. (LBL, Berkeley) ; Brown, D.N. (LBL, Berkeley) ; Méot, F. (Brookhaven) ; Singh, V. (UC, Berkeley) ; Kolomensky, Y. (LBNL, Berkeley) et al.
The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. [...]
arXiv:2309.05933 ; FERMILAB-CONF-23-464-PPD ; CALT-TH-2023-036.
- 68.
Fermilab Library Server - Fulltext - Fulltext
3.
Book cover Review of Particle Physics : 2022 / Workman, R.L.
The Review summarizes much of particle physics and cosmology [...]
Oxford : Oxford University Press, 2022 - 2270.


10.1093/ptep/ptac097
4.
Applications and Techniques for Fast Machine Learning in Science / Deiana, Allison McCarn (Southern Methodist U.) ; Tran, Nhan (Fermilab ; Northwestern U. (main)) ; Agar, Joshua (Lehigh U. (main)) ; Blott, Michaela (Xilinx, Dublin) ; Di Guglielmo, Giuseppe (Columbia U. (main)) ; Duarte, Javier (UC, San Diego) ; Harris, Philip (MIT) ; Hauck, Scott (George Washington U. (main)) ; Liu, Mia (Purdue U.) ; Neubauer, Mark S. (Illinois U., Urbana) et al.
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. [...]
arXiv:2110.13041; FERMILAB-PUB-21-502-AD-E-SCD.- 2022-04-12 - 56 p. - Published in : Front. Big Data 5 (2022) 787421 Fulltext: 2110.13041 - PDF; fermilab-pub-21-502-ad-e-scd - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server

Voir aussi: noms d'auteurs similaires
3 Bonventre, R
1 Bonventre, Richard J.
Vous désirez être averti des nouveaux résultats pour cette recherche?
Abonnez-vous à une alerte email personnalisée ou inscrivez-vous via le flux RSS.
Vous n'avez pas trouvé ce que vous avez cherché? Essayez votre requête sur d'autres serveurs:
Bonventre, R. dans Amazon
Bonventre, R. dans CERN EDMS
Bonventre, R. dans CERN Intranet
Bonventre, R. dans CiteSeer
Bonventre, R. dans Google Books
Bonventre, R. dans Google Scholar
Bonventre, R. dans Google Web
Bonventre, R. dans IEC
Bonventre, R. dans IHS
Bonventre, R. dans INSPIRE
Bonventre, R. dans ISO
Bonventre, R. dans KISS Books/Journals
Bonventre, R. dans KISS Preprints
Bonventre, R. dans NEBIS
Bonventre, R. dans SLAC Library Catalog
Bonventre, R. dans Scirus