Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 4 records found  Search took 0.66 seconds. 
1.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume IV - Far Detector Single-phase Technology / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.03010; FERMILAB-PUB-20-027-ND; FERMILAB-DESIGN-2020-04.- 2020-08-27 - 672 p. - Published in : JINST 15 (2020) T08010 Fulltext: 2002.03010 - PDF; fermilab-pub-20-027-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)
2.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. [...]
arXiv:2002.03005 ; FERMILAB-PUB-20-025-ND ; FERMILAB-DESIGN-2020-02.
- 357.
Fermilab News article - Fermilab Library Server (fulltext available) - Fulltext - Fulltext
3.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume I - Introduction to DUNE / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.02967; FERMILAB-PUB-20-024-ND; FERMILAB-DESIGN-2020-01.- 2020-08-27 - 244 p. - Published in : JINST 15 (2020) T08008 Fulltext: 2002.02967 - PDF; fermilab-pub-20-024-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)
4.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume III - DUNE Far Detector Technical Coordination / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.03008; FERMILAB-PUB-20-026-ND.- 2020-08-27 - 209 p. - Published in : JINST 15 (2020) T08009 Fulltext: 2002.03008 - PDF; fermilab-pub-20-026-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)

See also: similar author names
14 Kettell, S
59 Kettell, S H
7 Kettell, S.
28 Kettell, S.H.
16 Kettell, Steve
1 Kettell, Steve H.
1 Kettell, Steven
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
Haven't found what you were looking for? Try your search on other servers:
Kettell, Steve H in Amazon
Kettell, Steve H in CERN EDMS
Kettell, Steve H in CERN Intranet
Kettell, Steve H in CiteSeer
Kettell, Steve H in Google Books
Kettell, Steve H in Google Scholar
Kettell, Steve H in Google Web
Kettell, Steve H in IEC
Kettell, Steve H in IHS
Kettell, Steve H in INSPIRE
Kettell, Steve H in ISO
Kettell, Steve H in KISS Books/Journals
Kettell, Steve H in KISS Preprints
Kettell, Steve H in NEBIS
Kettell, Steve H in SLAC Library Catalog
Kettell, Steve H in Scirus