Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 154 record trovati  1 - 10successivofine  salta al record: La ricerca ha impiegato 0.79 secondi. 
1.
Scalable Declarative HEP Analysis Workflows for Containerised Compute Clouds / Šimko, Tibor (CERN) ; Heinrich, Lukas Alexander (CERN) ; Lange, Clemens (CERN) ; Lintuluoto, Adelina Eleonora (CERN ; Helsinki U.) ; MacDonell, Danika Marina (Victoria U.) ; Mečionis, Audrius (CERN) ; Rodríguez Rodríguez, Diego (CERN) ; Shandilya, Parth (CERN ; LNM Inst. Info. Tech.) ; Vidal García, Marco (CERN)
We describe a novel approach for experimental High-Energy Physics (HEP) data analyses that is centred around the declarative rather than imperative paradigm when describing analysis computational tasks. The analysis process can be structured in the form of a Directed Acyclic Graph (DAG), where each graph vertex represents a unit of computation with its inputs and outputs, and the graph edges describe the interconnection of various computational steps. [...]
2021 - 12 p. - Published in : 10.3389/fdata.2021.661501 Fulltext: PDF;
2.
CERN Analysis Preservation and Reuse Framework: FAIR research data services for LHC experiments / Fokianos, Pamfilos (CERN) ; Feger, Sebastian (CERN) ; Koutsakis, Ilias (CERN) ; Lavasa, Artemis (CERN) ; Maciulaitis, Rokas (CERN) ; Naim, Kamran (CERN) ; Okraska, Jan (CERN) ; Papadopoulos, Antonios (CERN) ; Rodríguez, Diego (CERN) ; Šimko, Tibor (CERN) et al.
In this paper we present the CERN Analysis Preservation service as a FAIR (Findable, Accessible, Interoperable and Reusable) research data preservation repository platform for LHC experiments. The CERN Analysis Preservation repository allows LHC collaborations to deposit and share the structured information about analyses as well as to capture the individual data assets associated to the analysis. [...]
2020 - 9 p. - Published in : EPJ Web Conf. 245 (2020) 06011 Fulltext: PDF;
In : 24th International Conference on Computing in High Energy and Nuclear Physics, Adelaide, Australia, 4 - 8 Nov 2019, pp.06011
3.
Hybrid analysis pipelines in the REANA reproducible analysis platform / Rodríguez, Diego (CERN) ; Mačiulaitis, Rokas (CERN) ; Okraska, Jan (CERN) ; Šimko, Tibor
We introduce the feasibility of running hybrid analysis pipelines in the REANA reproducible analysis platform. The REANA platform allows researchers to specify declarative computational workflow steps describing the analysis process and to execute analysis workload on remote containerised compute clouds. [...]
2020 - 7 p. - Published in : EPJ Web Conf. 245 (2020) 06041 Fulltext: PDF;
In : 24th International Conference on Computing in High Energy and Nuclear Physics, Adelaide, Australia, 4 - 8 Nov 2019, pp.06041
4.
Support for HTCondor high-throughput computing workflows in the REANA reusable analysis platform / Maciulaitis, Rokas (Ministere des affaires etrangeres et europeennes (FR)) ; Brener, Paul (University of Notre Dame (US)) ; Hampton, Scott (University of Notre Dame (US)) ; Hildreth, Mike (University of Notre Dame (US)) ; Hurtado Anampa, Kenyi Paolo (University of Notre Dame (US)) ; Johnson, Irena (University of Notre Dame (US)) ; Kankel, Cody (University of Notre Dame (US)) ; Okraska, Jan (University of Warsaw (PL)) ; Rodriguez Rodriguez, Diego (CERN) ; Simko, Tibor (CERN)
REANA is a reusable and reproducible data analysis platform allowing researchers to structure their analysis pipelines and run them on remote containerised compute clouds. REANA supports several different workflows systems (CWL, Serial, Yadage) and uses Kubernetes’ job execution backend. [...]
CERN-IT-2019-004.- Geneva : CERN, 2019 - 2 p. Fulltext: PDF;
In : 15th eScience IEEE International Conference, San Diego, United States, 24 - 27 Sep 2019, pp.eScience
5. Support for HTCondor High-Throughput Computing Workflows in the REANA Reusable Analysis Platform
Reference: Poster-2019-942
Keywords:  reproducible science  computational workflows  high-throughput computing  high-performance computing  data analysis
Created: 2019. -1 p
Creator(s): Maciulaitis, Rokas; Bremer, Paul; Hampton, Scott; Hildreth, Mike; Hurtado Anampa, Kenyi Paolo [...]

REANA is a reusable and reproducible data analysis platform allowing researchers to structure their analysis pipelines and run them on remote containerised compute clouds. REANA supports several different workflows systems (CWL, Serial, Yadage) and uses Kubernetes’ job execution backend. We have designed an abstract job execution component that extends the REANA platform job execution capabilities to support multiple compute backends. We have tested the abstract job execution component with HTCondor and verified the scalability of the designed solution. The results show that the REANA platform would be able to support hybrid scientific workflows where different parts of the analysis pipelines can be executed on multiple computing backends.

Related links:
eScience 2019 Poster Session
© CERN Geneva

Access to files
6.
Beyond repositories: enabling actionable FAIR open data reuse services in particle physics / Rodriguez Rodriguez, Diego (CERN) ; Simko, Tibor (CERN) ; Dallmeier-Tiessen, Sunje (CERN) ; Feger, Sebastian Stefan (Universitaet Stuttgart (DE)) ; Fokianos, Pamfilos (CERN) ; Kousidis, Konstantinos ; Lavasa, Artemis (CERN) ; Maciulaitis, Rokas (Ministere des affaires etrangeres et europeennes (FR)) ; Okraska, Jan (University of Warsaw (PL)) ; Trzcinska, Anna (CERN) et al.
We describe experiences from building and operating the CERN Open Data repository platform that manages and disseminates more than one petabyte of open data from particle physics. We discuss the education and research use cases of the platform and we argue that in order to make the FAIR open data fully actionable and reusable by a variety of users, the research data repositories should evolve from focusing on resource-hosting present towards integrated service-provisioning future. [...]
IT-TALK-2019-002.- Geneva : CERN, 2019 Slides: PDF;
In : Open Repositories 2019, Hamburg, Hamburg, Germany, 10 - 14 Jun 2019
7.
Open is not enough / Chen, Xiaoli (CERN ; Sheffield U.) ; Dallmeier-Tiessen, Sünje (CERN) ; Dasler, Robin (CERN) ; Feger, Sebastian (CERN ; Stuttgart U.) ; Fokianos, Pamfilos (CERN) ; Gonzalez, Jose Benito (CERN) ; Hirvonsalo, Harri (CERN ; Helsinki Inst. of Phys.) ; Kousidis, Dinos (CERN) ; Lavasa, Artemis (CERN) ; Mele, Salvatore (CERN) et al.
The solutions adopted by the high-energy physics community to foster reproducible research are examples of best practices that could be embraced more widely. This first experience suggests that reproducibility requires going beyond openness..
2019 - 7 p. - Published in : Nature Phys. 15 (2019) 113-119 Fulltext from Publisher: PDF;
8.
Publisher Correction: Open is not enough / Chen, Xiaoli ; Dallmeier-Tiessen, Sünje ; Dasler, Robin ; Feger, Sebastian ; Fokianos, Pamfilos ; Gonzalez, Jose Benito ; Hirvonsalo, Harri ; Kousidis, Dinos ; Lavasa, Artemis ; Mele, Salvatore et al.
In the version of this Perspective originally published, one of the authors’ names was incorrectly given as Kati Lassili-Perini, it should have been Kati Lassila-Perini. This has been corrected in all versions of the Perspective..
2019 - 7 p. - Published in : Nature Phys. 15 (2019) 197
9.
REANA: A System for Reusable Research Data Analyses / Šimko, Tibor (CERN) ; Heinrich, Lukas (New York University) ; Hirvonsalo, Harri (CSC) ; Kousidis, Dinos (CERN) ; Rodríguez, Diego (CERN)
IT-TALK-2018-008.- Geneva : CERN, 2018 Fulltext: PDF;
In : 23rd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2018, Sofia, Bulgaria, 9 - 13 Jul 2018
10.
REANA: A system for reusable research data analyses / Šimko, Tibor (CERN) ; Heinrich, Lukas (New York U. (main)) ; Hirvonsalo, Harri (Espoo, Sci. Computing Ctr.) ; Kousidis, Dinos (CERN) ; Rodríguez, Diego (CERN)
The revalidation, reinterpretation and reuse of research data analyses requires having access to the original computing environment, the experimental datasets, the analysis software, and the computational workflow steps which were used by researchers to produce the original scientific results in the first place. REANA (Reusable Analyses) is a nascent platform enabling researchers to structure their research data analyses in view of enabling future reuse. [...]
CERN-IT-2018-003.- Geneva : CERN, 2019 - 8 p. - Published in : EPJ Web Conf. 214 (2019) 06034 Fulltext from publisher: PDF; Preprint: PDF;
In : 23rd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2018, Sofia, Bulgaria, 9 - 13 Jul 2018, pp.06034

CERN Document Server : 154 record trovati   1 - 10successivofine  salta al record:
Vedi anche: autori con nomi simili
93 Rodriguez, D
19 Rodriguez, D C
1 Rodriguez, D M
1 Rodriguez, D Martin
2 Rodriguez, D R
98 Rodriguez, D.
1 Rodriguez, D.C.
1 Rodriguez, Damian Martin
3 Rodriguez, Daniela
19 Rodriguez, David
13 Rodriguez, David R
1 Rodriguez, Diego Rodriguez
1 Rodriguez, Douglas
93 Rodríguez, D
19 Rodríguez, D C
1 Rodríguez, D F
98 Rodríguez, D.
1 Rodríguez, Daniel Fernández
149 Rodríguez, Diego
Sei interessato ad essere notificato su nuovi risultati di questa ricerca?
Imposta un avviso via mail personale o iscriviti al feed RSS.
Non hai trovato quello che cercavi? Prova la ricerca su altri server:
Rodriguez, Diego in Amazon
Rodriguez, Diego in CERN EDMS
Rodriguez, Diego in CERN Intranet
Rodriguez, Diego in CiteSeer
Rodriguez, Diego in Google Books
Rodriguez, Diego in Google Scholar
Rodriguez, Diego in Google Web
Rodriguez, Diego in IEC
Rodriguez, Diego in IHS
Rodriguez, Diego in INSPIRE
Rodriguez, Diego in ISO
Rodriguez, Diego in KISS Books/Journals
Rodriguez, Diego in KISS Preprints
Rodriguez, Diego in NEBIS
Rodriguez, Diego in SLAC Library Catalog
Rodriguez, Diego in Scirus