Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 8 records found  Search took 0.68 seconds. 
1.
Model Independent Approach of the JUNO $^8$B Solar Neutrino Program / JUNO Collaboration
The physics potential of detecting $^8$B solar neutrinos is exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) interactions. [...]
arXiv:2210.08437.
- 24 p.
Fulltext
2.
Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC / DUNE Collaboration
DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. [...]
arXiv:2203.16134; CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF; CERN-EP-DRAFT-MISC-2022-003; FERMILAB-PUB-22-242-LBNF.- 2022-07-16 - 31 p. - Published in : Eur. Phys. J. C 82 (2022) 618 Fulltext: 2203.16134 - PDF; jt - PDF; Publication - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
3.
Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network / DUNE Collaboration
Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). [...]
arXiv:2203.17053; FERMILAB-PUB-22-240-AD-ESH-LBNF-ND-SCD; CERN-EP-2022-077.- Geneva : CERN, 2022-10-12 - 31 p. - Published in : Eur. Phys. J. C 82 (2022) 903 Fulltext: jt - PDF; CERN-EP-DRAFT-MISC-2022-002 - PDF; 2203.17053 - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External link: Fermilab Library Server
4.
Deep Underground Neutrino Experiment (DUNE) Near Detector Conceptual Design Report / DUNE Collaboration
This report describes the conceptual design of the DUNE near detector
arXiv:2103.13910; FERMILAB-PUB-21-067-E-LBNF-PPD-SCD-T.- 2021-09-29 - 250 p. - Published in : Instruments 5 (2021) 31 Fulltext: 2103.13910 - PDF; fermilab-pub-21-067-e-lbnf-ppd-scd-t - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
5.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume IV - Far Detector Single-phase Technology / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. DUNE is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.03010; FERMILAB-PUB-20-027-ND; FERMILAB-DESIGN-2020-04.- 2020-08-27 - 672 p. - Published in : JINST 15 (2020) T08010 Fulltext: 2002.03010 - PDF; fermilab-pub-20-027-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)
6.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II DUNE Physics / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. [...]
arXiv:2002.03005 ; FERMILAB-PUB-20-025-ND ; FERMILAB-DESIGN-2020-02.
- 357.
Fermilab News article - Fermilab Library Server (fulltext available) - Fulltext - Fulltext
7.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume I - Introduction to DUNE / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.02967; FERMILAB-PUB-20-024-ND; FERMILAB-DESIGN-2020-01.- 2020-08-27 - 244 p. - Published in : JINST 15 (2020) T08008 Fulltext: 2002.02967 - PDF; fermilab-pub-20-024-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)
8.
Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report : Volume III - DUNE Far Detector Technical Coordination / DUNE Collaboration
The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay -- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. [...]
arXiv:2002.03008; FERMILAB-PUB-20-026-ND.- 2020-08-27 - 209 p. - Published in : JINST 15 (2020) T08009 Fulltext: 2002.03008 - PDF; fermilab-pub-20-026-nd - PDF; Fulltext from Publisher: PDF; Fulltext from publisher: PDF; External links: Fermilab News article; Fermilab Library Server (fulltext available)

Veja também: nomes de autores similares
17 Bongrand, M
19 Bongrand, M.
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
Haven't found what you were looking for? Try your search on other servers:
Bongrand, Mathieu em Amazon
Bongrand, Mathieu em CERN EDMS
Bongrand, Mathieu em CERN Intranet
Bongrand, Mathieu em CiteSeer
Bongrand, Mathieu em Google Books
Bongrand, Mathieu em Google Scholar
Bongrand, Mathieu em Google Web
Bongrand, Mathieu em IEC
Bongrand, Mathieu em IHS
Bongrand, Mathieu em INSPIRE
Bongrand, Mathieu em ISO
Bongrand, Mathieu em KISS Books/Journals
Bongrand, Mathieu em KISS Preprints
Bongrand, Mathieu em NEBIS
Bongrand, Mathieu em SLAC Library Catalog
Bongrand, Mathieu em Scirus