Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

CERN Document Server 83 elementer funnet  1 - 10nesteslutt  gå til element: Søket tok 0.76 sekunder. 
1.
Measurement of the fractional radiation length of a pixel module for the CMS Phase-2 upgrade via the multiple scattering of positrons / Tracker Group of the CMS Collaboration
High-luminosity particle collider experiments such as the ones planned at the High-Luminosity Large Hadron Collider require ever-greater vertexing precision of the tracking detectors, necessitating also reductions in the material budget of the detectors. Traditionally, the fractional radiation length ($x/X_0$) of detectors is either estimated using known properties of the constituent materials, or measured in dedicated runs of the final detector. [...]
arXiv:2407.13721; CERN-CMS-NOTE-2024-005.- Geneva : CERN, 2024-10-16 - 42 p. - Published in : JINST 19 (2024) P10023 Fulltext: cc31400e03af7929e4432fc48d857519 - PDF; NOTE2024_005 - PDF; 2407.13721 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
2.
The CCube reconstruction algorithm for the SoLid experiment / SoLid Collaboration
The SoLid experiment is a very-short-baseline experiment aimed at searching for nuclear reactor-produced active to sterile antineutrino oscillations. The detection principle is based on the pairing of two types of solid scintillators: polyvinyl toluene and $^6$LiF:ZnS(Ag), which is a new technology used in this field of Physics. [...]
arXiv:2404.03580.- 2024-07-25 - 23 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1066 (2024) 169628 Fulltext: PDF;
3.
Beam Test Performance Studies of CMS Phase-2 Outer Tracker Module Prototypes / Tracker Group of the CMS Collaboration
A new tracking detector will be installed as part of the Phase-2 upgrade of the CMS detector for the high-luminosity LHC era. This tracking detector includes the Inner Tracker, equipped with silicon pixel sensor modules, and the Outer Tracker, consisting of modules with two parallel stacked silicon sensors. [...]
arXiv:2404.08794.- 2024-10-30 - 40 p. - Published in : JINST 19 (2024) P10032 Fulltext: PDF; Fulltext from Publisher: PDF;
4.
Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker / CMS Collaboration
The Large Hadron Collider (LHC) at CERN will undergo an upgrade in order to increase its luminosity to $7.5 \times 10^{34}$ cm$^{-2}$s$^{-1}$. The increased luminosity during this High-Luminosity running phase\\ (HL-LHC), starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. [...]
arXiv:2307.01580; CERN-CMS-NOTE-2023-005.- Geneva : CERN, 2023-11-17 - 29 p. - Published in : JINST 18 (2023) P11015 Fulltext: dc1e9cca1e7c6f6dae97cbda67121cb1 - PDF; 2307.01580 - PDF; NOTE2023_005 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
5.
Evaluation of HPK $n^+$-$p$ planar pixel sensors for the CMS Phase-2 upgrade / Tracker Group of the CMS Collaboration
To cope with the challenging environment of the planned high luminosity upgrade of the Large Hadron Collider (HL-LHC), scheduled to start operation in 2029, CMS will replace its entire tracking system. The requirements for the tracker are largely determined by the long operation time of 10~years with an instantaneous peak luminosity of up to $7.5\times 10^{34}$~cm$^{-2}$s$^{-1}$ in the ultimate performance scenario. Depending on the radial distance from the interaction point, the silicon sensors will receive a particle fluence corresponding to a non-ionizing energy loss of up to $\Phi_{\text{eq}} = 3.5\times 10^{16}$~cm$^{-2}$. [...]
arXiv:2212.04793; CMS-NOTE-2023-002.- Geneva : CERN, 2023-05-09 - 18 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1053 (2023) 168326 Fulltext: NOTE2023_002 - PDF; 2212.04793 - PDF; 826201a370cac8eb0cb4bd0a37aa14d9 - PDF; External link: Fermilab Library Server
6.
High Energy Physics Opportunities Using Reactor Antineutrinos / CHANDLER Collaboration
Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. [...]
arXiv:2203.07214 ; FERMILAB-CONF-22-853-PPD-SCD.
- 95.
Fermilab Library Server - eConf - Fulltext - Fulltext
7.
Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation / Tracker Group of the CMS Collaboration
The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5-7.5$\times10^{34}$ cm$^{-2}$s$^{-1}$. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000-4000 fb$^{-1}$ of proton-proton collisions at a center-of-mass energy of 13-14 TeV. [...]
arXiv:2205.00961.- 2023-04-04 - 31 p. - Published in : JINST 18 (2023) P04001 Fulltext: jt - PDF; FERMILAB-PUB-22-355-CMS-PPD-SCD - PDF; 2205.00961 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
8.
Beam test performance of a prototype module with Short Strip ASICs for the CMS HL-LHC tracker upgrade / Tracker Group of the CMS Collaboration
The Short Strip ASIC (SSA) is one of the four front-end chips designed for the upgrade of the CMS Outer Tracker for the High Luminosity LHC. Together with the Macro-Pixel ASIC (MPA) it will instrument modules containing a strip and a macro-pixel sensor stacked on top of each other. [...]
2022 - 24 p. - Published in : JINST 17 (2022) P06039 Fulltext: PDF; Fulltext from Publisher: PDF;
9.
Strategies and performance of the CMS silicon tracker alignment during LHC Run 2 / CMS Collaboration
The strategies for and the performance of the CMS silicon tracking system alignment during the 2015-2018 data-taking period of the LHC are described. The alignment procedures during and after data taking are explained. [...]
arXiv:2111.08757; CMS-TRK-20-001; CERN-EP-2021-203; CMS-TRK-20-001-003.- Geneva : CERN, 2022-08-11 - 45 p. - Published in : Nucl. Instrum. Methods Phys. Res., A 1037 (2022) 166795 Fulltext: fermilab-pub-21-673-cms - PDF; Publication - PDF; 2111.08757 - PDF; CMS-TRK-20-001-arXiv - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
10.
Comparative evaluation of analogue front-end designs for the CMS Inner Tracker at the High Luminosity LHC / CMS Tracker Group of the CMS Collaboration
The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior to the start of the High Luminosity LHC period. One of the crucial components of the new Inner Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular its analogue front-end, which receives the signal from the sensor and digitizes it. [...]
arXiv:2105.00070.- 2021-12-13 - 31 p. - Published in : JINST 16 (2021) P12014 Fulltext: fermilab-pub-21-744-cms - PDF; 2105.00070 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server

CERN Document Server : 83 elementer funnet   1 - 10nesteslutt  gå til element:
Se også: lignende forfatternavn
48 Beaumont, W
19 Beaumont, Willem
1 Beaumont, Willem Marie Godfried
Ønsker du å bli varslet om nye resultater fra denne spørringen?
Sett opp ditt eget e-postvarsel eller abonner på RSS.
Fant du ikke det du lette etter? Gjenta søket på andre tjenere:
Beaumont, W. i Amazon
Beaumont, W. i CERN EDMS
Beaumont, W. i CERN Intranet
Beaumont, W. i CiteSeer
Beaumont, W. i Google Books
Beaumont, W. i Google Scholar
Beaumont, W. i Google Web
Beaumont, W. i IEC
Beaumont, W. i IHS
Beaumont, W. i INSPIRE
Beaumont, W. i ISO
Beaumont, W. i KISS Books/Journals
Beaumont, W. i KISS Preprints
Beaumont, W. i NEBIS
Beaumont, W. i SLAC Library Catalog
Beaumont, W. i Scirus