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Abstract

We present a supersymmetric model of avor. A single U(1) gauge group is

responsible for both generating the avor spectrum and communicating supersym-

metry breaking to the visible sector. The problem of Flavor Changing Neutral

Currents is overcome, in part using an `E�ective Supersymmetry' spectrum among

the squarks, with the �rst two generations very heavy. All masses are generated

dynamically and the theory is completely renormalizable. The model contains

a simple Froggatt-Nielsen sector and communicates supersymmetry breaking via

gauge mediation without requiring a separate messenger sector. By forcing the

theory to be consistent with SU(5) Grand Uni�cation, the model predicts a large

tan� and a massless up quark. While respecting the experimental bounds on CP

violation in the K-system, the model leads to a large enhancement of CP violation

in B � �B mixing as well as in B decay amplitudes.

1On leave from Department of Theoretical Physics, University of Oxford, U.K.



1 Introduction

Small dimensionless numbers in physics should have a known dynamical origin [1]. How-

ever, Nature contains a number of unexplained, seemingly fundamental small quantities,

such as the ratio between the weak scale and the Planck scale
�
Mw

Mp

�
, and the ratios

of known fermion masses to the weak scale
�
Mf

Mw

�
. The former is subject to large ra-

diative corrections in the Standard Model (SM). But the hierarchy Mw � Mp could

be explained by dynamically broken supersymmetry with superpartner masses near the

weak scale, and the superpartner spectrum restricted such that it satis�es experimental

constraints on Flavor Changing Neutral Currents (FCNC) and CP violation [2]. By con-

trast, the fermion masses are protected by an approximate chiral symmetry. However, the

SM requires tiny dimensionless parameters to reproduce the measured spectrum. These

parameters could be produced dynamically by the spontaneous breaking of a avor sym-

metry. A complete model would successfully predict the entire spectrum of scalars and

fermions with a Lagrangian that only contained coupling constants of order unity. In

this article, we present a model of supersymmetry and avor which is renormalizable and

natural, and avoids excessive FCNC. All mass scales are generated dynamically from the

fundamental scale of supersymmetry breaking.

One way of mediating supersymmetry breaking to the observable sector is through

gauge interactions [3]. In some of the �rst complete models of gauge mediated super-

symmetry breaking (GMSB), a new gauge group, U(1)mess, couples to both a Dynamical

Supersymmetry Breaking (DSB) sector and a `messenger' sector to which supersymmetry

breaking is communicated via loop e�ects [4, 5]. The messenger sector consists of super-

�elds that are vector-like with respect to the SM gauge group (Gsm ) and other super�elds

that are Gsm singlets. At least one Gsm singlet has a non-zero vacuum expectation value

(vev) with both scalar and auxiliary components, which in turn give supersymmetric

and non-supersymmetric masses respectively to the vector-like �elds. Squarks, sleptons

and gauginos receive supersymmetry breaking masses from loop corrections involving the

messenger sector and SM gauge �elds. The mass contributions come from gauge inter-

actions and are therefore avor independent. Hence, the three generations of scalars are

very nearly degenerate, naturally suppressing unwanted contributions to FCNC. E�orts

to improve this scenario have been made in the last few years, including attempts to

remove the messenger sector and allow the DSB sector to carry Gsm quantum numbers

[6].

The most successful models of avor are based on a mechanism developed by Froggatt

and Nielsen in the late 70's [7]. In their original models, the small Yukawa couplings of the

SM are forbidden by an additional (gauged) U(1)F symmetry. Quarks and leptons instead

couple to Froggatt-Nielsen (FN) �elds (heavy fermions in vector-like representations of

Gsm), and scalar avons, � (Gsm singlets). Non-zero avon vevs, h�i � MF (where

MF is the mass of the FN �elds), break the U(1)F and cause mixing between the heavy

and light fermions. This produces Yukawa couplings in the low energy e�ective theory

proportional to the small ratio � � h�i

MF
to some power n. Here, n depends on the charges
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of the relevant fermions. A clever choice of charges can produce the correct quark and

lepton masses and quark mixing angles, all with couplings of order unity.

These models of fermion masses and GMSB share a number of signi�cant features.

Both make use of an additional gauged U(1) symmetry which is spontaneously broken,

both contain heavy vector-like quarks and leptons and both contain �elds that are singlets

under Gsm. These similarities are striking and compel one to ask if these two mechanisms

can be incorporated e�ciently into the same model2. There are, however, major di�er-

ences between the two mechanisms. The biggest di�erence comes from the fact that in

the FN mechanism the vector-like �elds and some of the SM �elds are charged under the

U(1). If the same were true in GMSB, the squarks would not, in general, be degenerate.

However, large contributions to FCNC and CP violation can be suppressed if the �rst

two generations of squarks are very heavy, as in \E�ective Supersymmetry" [9, 10]. If

the �rst two generations carry U(1) charges, their scalar components would be heavy

due to loop e�ects, while their fermion masses would be suppressed. Models of this kind

have been built with the U(1) anomalies canceled at a high scale by the Green-Schwartz

mechanism [9, 11].

In this article, we present a model that dynamically generates both fermion and scalar

masses using a single gauged U(1) which is non-anomalous. In doing so, we employ a

modi�ed version of the FN mechanism. We produce the small ratio � � h�i

MF
in a similar

fashion. However, the range of small parameters comes predominantly from the use of

avons with di�erent vevs producing di�erent ratios as opposed to di�erent powers of the

same ratio. This method requires fewer FN �elds (at the cost of requiring more avons),

allowing us to avoid a Landau pole in �s below MGUT . While requiring U(1) charge

assignments to be consistent with SU(5), we are able to cancel all gauge anomalies,

and we are able to �nd reasonable fermion mass matrices with fundamental coupling

constants of order unity. The spectrum includes a massless up quark, a viable solution

to the strong CP problem.

The paper is laid out as follows: Section 2 describes the overall design of the model,

the mass spectrum of the scalars and the restrictions on the U(1) charges required for this

spectrum. Section 3 describes the fermion mass matrices allowed within these restric-

tions. Section 4 describes the contributions to FCNC and shows that they fall within

experimental bounds. Section 5 describes some interesting cosmological e�ects of the

model, and Section 6 concludes the paper. The Appendix shows why squarks cannot be

degenerate in this approach.

2 Overview

In this section, we describe the overall structure of the model.

2These similarities were �rst noted by Arkani-Hamed, et al. [8]. In their article, they indicate some
of the problems with identifying the two sectors. These and other problems are addressed in this note.
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Figure 1: Source of f - �f mixing.

2.1 Supersymmetry Breaking

The highest scale de�ned in our model is the one at which supersymmetry breaks. This

breaking occurs in the DSB sector at

�DSB � 103 � 104TeV: (1)

This scale is generated dynamically via nonperturbative e�ects. Because there are cur-

rently many types of models in which supersymmetry is known or believed to be broken

dynamically [12, 13], and because we have very few requirements of this sector, we will

leave it largely unspeci�ed. However, the sector must contain a global U(1) symmetry

which can be identi�ed with a U(1)mess gauge symmetry that communicates supersym-

metry breaking to the rest of the model. Once the DSB sector is integrated out, all lower

scales will be generated dynamically through radiative e�ects.

2.2 Flavor and the Messengers of Supersymmetry Breaking

In order to naturally produce the small fermion masses of the SM, our model contains

Froggatt-Nielsen (FN) �elds which are in vector-like representations of Gsm. A U(1)F
gauge symmetry forbids most of the SM Yukawa couplings. The SM �elds3 (f; �f) instead

couple to the FN �elds (F; �F ) and avons (�; �) in the superpotential

W � �F �F + �f �F +Hf �f (2)

where H is a Higgs super�eld. The scalar vev of � produces a mass term for the FN

�elds. If � has a scalar component with a vev such that h�i � h�i, then the low energy

description of this theory will contain the superpotential term � h�i

h�i
Hf �f (see Figure 1).

Thus a small coupling is produced dynamically from coupling constants of order unity.

Di�erent small Yukawa couplings can be produced by avons with di�erent vevs. The

U(1)F charges are chosen so as to produce fermion masses and mixing angles that mimic

those experimentally measured4.

3When referring to `SM �elds' we mean the super�elds which contain the standard model �elds and
their superpartners.

4Our model is `notationally' similar but signi�cantly di�erent from another old and interesting ap-
proach to avor by Dimopoulos [14]

3



The DSB sector will also have �elds charged under U(1)F. All other matter is assumed

to couple to the DSB sector only via the U(1)F. Fields carrying this charge will receive

contributions to their scalar masses at two loops. By giving the �rst two generations

non-zero avor charge, we can produce the E�ective Supersymmetry spectrum [10]. The

uncharged �elds will be lighter and receive their masses at one or two loops below �DSB

(see Section 2.4). The �rst two generations are heavy and adequately suppress unwanted

contributions to FCNC and CP violation (Section 4).

2.3 Flavor Symmetry Breaking

We choose Froggatt-Nielsen �elds that are vector-like under Gsm and chiral under U(1)F.

Their masses at tree-level will be proportional to avon vevs which break the avor

symmetry. This symmetry breaking is due in part to a Fayet-Iliopoulos (FI) term [15],

�2, which appears in the U(1)F D-term:

g2F
2
[�2 +

X
i

qij ij
2]2 (3)

where gF is the gauge coupling and qi are the U(1)F charges. The �elds,  i represent all

charged �elds, including both trivial and non-trivial representations of Gsm. Provided

that
P

i qi vanishes, which is necessary for anomaly cancelation, the FI term only receives

�nite renormalization proportional to supersymmetry breaking e�ects. We assume that

the fundamental FI term vanishes. Then the e�ective � depends on the DSB spectrum,

and is generally an order of magnitude below �DSB.

At two loops, every scalar with a non-zero qi receives a supersymmetry breaking mass

squared proportional to its charge squared [4, 5] 5. Speci�cally, the contribution to the

e�ective potential is fm2
P

i q
2

i j ij
2, where the DSB sector again determines the exact

value of fm2. Its magnitude will generally be two orders of magnitude below �2. Thus,

after integrating out the DSB sector, the full e�ective potential looks like

Veff = j
@W

@ i
j2 + fGsm D-termsg+

g2F
2
[�2 +

X
i

qij ij
2]2 +fm2

X
i

q2i j ij
2 + � � � (4)

where the ellipsis represent higher dimension supersymmetry breaking terms. The U(1)F
D-term has a large number of at directions. The parameter fm2 comes from the DSB

and may have either sign. As we will see in Section ??, the squared masses of the

third generation and Higgs scalars come from loop corrections which depend on fm2.

We �nd we must have fm2 < 0 to keep squark masses positive. This choice of sign

introduces runaway at directions into Eq. 4. These are curbed by the higher dimension

supersymmetry breaking terms that we have ignored and by superpotential interactions.

We will choose a superpotential and a local minimum that allows us to neglect the higher

dimension terms.

5We assume there are no direct contact interactions between the DSB sector and the visible sector.
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How can we generate the appropriate avon vev hierarchy? One approach is to give

vevs only to � �elds at tree level. The � avons receive vevs at one or more loops. Assume

for instance that the two avons � and �0 have vevs. The superpotential interaction ��0�

gives a vev to the avon � via the diagram (solid and dashed lines represent fermion and

scalar �elds respectively):

,

χ
χ

χ ,
U(1)     gaugino

F

χ

φ

Once � has a vev, some other avon �0 may receive a vev by means of a similar diagram if

it appears in the superpotential interaction ���0. Such a technique produces a hierarchy

of vevs. In the above case, for instance, h�i and h�0i are respectively one loop and two

loop factors smaller than h�i.
Generating the hierarchy of vevs requires that we assign charges to the avons that

allow the required superpotential interactions. It is also important to prevent any �eld

that transforms non-trivially under SU(5) from acquiring a vev. Finally, additional

avons must be added to the model in order to cancel the U(1)F and U(1)3F anomalies.

Preliminary calculations have shown that the above approach should yield a viable scalar

potential.

2.4 Mass Generation: Scalars

As we have seen, all U(1)F charged scalars have masses of at least order ~m. Uncharged

scalars receive supersymmetry breaking contributions from a number of di�erent sources.

Fields that transform non-trivially under Gsm receive contributions from two loop dia-

grams in the low energy theory (below �DSB). Drawing from the results of Poppitz and

Trivedi [16], we �nd that the leading contribution to the mass of an uncharged scalar at

two loops is (up to a group theory factor)

m2

unchg � N
�2i
2�2

�m2 log

 
�2

DSB

m2

f

!

where N is the number of charged Froggatt-Nielsen pairs, i denotes the relevant gauge

group, mf is the fermionic mass of the Froggatt-Nielsen �elds and �m2 is of the order

of the non-holomorphic contribution to the scalar masses (i.e. �m2 � ~m2).

The gaugino masses arise at one loop. Using again the results of [16], we �nd

m~g ' N
�i

4�

F

mf
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Figure 2: One loop contribution to the mass of an uncharged scalar, A, appearing in

the superpotential term W � ABC. The �elds B and C have U(1)F charges q and �q
respectively.

where we have assumed that F is signi�cantly larger than �m2. Here h�i = M + ��F ,

where � is a avon whose vev gives a mass to FN �elds. Thus, mf = M . These results

assume F < M2, which is the case for our model. In order for the gauginos (and in

particular the winos) not to be too light compared to the lightest Higgs, we require that

F be within an order of magnitude of M2 (i.e. F
M2 >

1

10
). By choosing ~m to be about

20TeV, we �nd that the light Higgs has a mass near the weak scale.

Uncharged �elds with direct superpotential couplings to charged �elds receive scalar

mass contributions from one-loop graphs containing charged �elds (Figure 2) of order

�
�

16�2
~m2 log

~m2

�DSB
2
; (5)

where � is the superpotential coupling. This contribution is approximately an order of

magnitude larger than the two-loop contribution above.

The mass of an uncharged �eld may also receive a contribution from a charged �eld

due to U(1)F breaking if the charged and uncharged �elds both appear in the same F-

term. For example, let us assume that the superpotential contains ABC+C�D where A,

B and C are uncharged and � and D are charged. If � has a non-zero vev, the squared

masses of the scalar components of A and B receive a contribution proportional to the

supersymmetry breaking mass of the scalar component of the charged D �eld,

�
�

16�2
~m2: (6)

Moreover, if an uncharged �eld appears with a charged �eld in the same F-term, they may

mix due to U(1)F breaking. For example, the F-term contribution to the scalar potential

from the �eld C above is jAB + D�j2. If both � and B have non-zero vevs, then A

and D would mix. The contributions described in this and the preceding paragraphs are

not avor independent. Thus, degenerate squarks are not a feasible method of avoiding

FCNC.
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2.5 Constraints on Charge Assignments and Couplings

In choosing a Froggatt-Nielsen sector, our desire is to leave intact perhaps the most

compelling feature of the Minimal Supersymmetric Standard Model (MSSM), i.e., the

uni�cation of gauge coupling constants. To preserve this result, our vector-like FN �elds

should come in complete SU(5) representations. In addition, U(1)F charges should be

assigned to full multiplets. Besides maintaining uni�cation, this allows us to satisfy easily

the standard anomaly conditions as well as

Tr[Y m2

i ] ' 0; (7)

where mi are scalar particle masses and Y is ordinary hypercharge. If this equation were

not satis�ed, the U(1)Y D-term would receive an unwanted Fayet-Iliopoulos term at one

loop.

It is well-known that addition of complete SU(5) multiplets to the standard model

does not ruin coupling constant uni�cation. In order for the gauge couplings to remain

perturbative from one-loop running to the GUT scale, the following inequality must be

satis�ed:

3n10 + n5
<
� 5; (8)

where n10 is the number of f10; �10g pairs in addition to the standard model �elds,

and n5 is the number of additional f�5; 5g pairs. Two loop contributions to the beta

functions will modify this condition, with two loop gauge contributions generally reducing

slightly the number of additional �elds allowed and superpotential couplings increasing

this number|we will assume the net two-loop e�ects are not too important. A realistic

model of fermion masses that satis�es this condition will have n10 = 1 and n5 = 1 or 2.

Thus, the particle content of our model includes

� three generations of matter in SU(5) multiplets, f10gq; �5
g
rg, where g(= 1; 2; 3) is the

generation index, and q and r denote U(1)F charges,

� two Higgs super�elds, Hu and Hd,6

� Froggatt-Nielsen �elds in vector representations of SU(5),

f10Vd ; �10
�V

e g, f�5
V
l ; 5

�V
mg, and possibly f�5V

0

n ; 5
�V 0

p g,

� avons (SU(5) singlets) which have non-zero vevs { some at tree-level (�), and

others at one or more loops (�), and

� additional �elds (A;B;C; : : :) which help produce a 'cascade' of avon vevs.

6The SU(5) representations of the Higgs �elds are intentionally left unspeci�ed. We do not intend
here to build a complete Grand Uni�ed theory, but we wish to allow uni�cation to be possible in the
context of our model. We only require that Hu and Hd contain the standard Higgs doublets.
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Figure 3: Spectral structure of the model.

Another major constraint on the charge assignments of these �elds comes from the

experimental limits on FCNC [2]. There are di�erent ways to constrain squark (and

slepton) masses in order to limit supersymmetric contributions to FCNC. One way is

to make their masses degenerate, thus suppressing their contribution through a super-

symmetric GIM mechanism. Degeneracy is a natural result and thus a virtue of the

original GMSB models [3, 4, 5]. In those models, squark and slepton masses are domi-

nated by loop corrections involving avor-blind Gsm couplings. However, the additional

structure in our model produces signi�cant avor dependent contributions to sparticle

masses, destroying this degeneracy. Therefore, to suppress FCNC, we instead decouple

the problem by making the �rst two generations heavy [9, 10]. This can be achieved

naturally by simply requiring the particles in the �rst two generations, (101a; 10
2

b ; �5
1

i ; �5
2

j),

to have non-zero U(1)F charges. We do �nd, however, that some level of degeneracy must

still exist between the �rst two generations.

The following observations impose additional constraints on our model:

� To avoid �ne tuning, at least one Higgs must have a mass at the weak scale.

Therefore, one Higgs must be uncharged (under U(1)F) and must not have any

contact interactions with charged �elds.

� The higgsino mass will come from a �-type term in the superpotential,

W � XHuHd: (9)

Thus, to satisfy the previous condition, both Higgs �elds must be uncharged.

� The top quark's Yukawa coupling is of order unity and therefore does not come

from the Froggatt-Nielsen mechanism, but from a direct coupling to the Higgs:

W � Hu
10

3

c10
3

c (10)

8



where c is the avor charge and the 3 indicates the generation. We conclude that

c = 0 by U(1)F invariance. Note also that c = 0 guarantees that the Hu mass

contribution is not much larger than the weak scale.

Figure 3 summarizes the resulting spectrum.

3 Fermion masses

We want Yukawa coupling matrices in the low energy e�ective theory that reproduce

the known experimental values of fermion masses and mixing angles. In order to have

a model from which the fermion masses of the SM appear naturally, we must produce

the small parameters in the Yukawa matrices dynamically. We accomplish this with a

modi�ed FN mechanism and a hierarchy of avon vevs. This section describes the allowed

fermion mass matrices.

3.1 Framework

The masses of the fermions are generated by superpotential terms like Mij i j, where

Mij are the scalar vevs of Higgs or avon super�elds. To construct these superpotential

terms, we apply the following guidelines:

� We work in the context of SU(5). This means our U(1)F charge assignments are

consistent with SU(5).

� We want the model to be natural. Any superpotential interaction should appear

with a coupling constant of order unity.

� The Higgs �elds are uncharged. The up-type Higgs can not couple directly to

charged �elds and the �elds it couples to have restricted interactions with charged

�elds. The third generation 10 is also uncharged.

� The �rst two generations must be charged in order to avoid large FCNC (this will

be shown explicitly).

From the following arguments, we will conclude that the FN sector must include one

f10, �10g pair and two f5, �5g pairs. The model predicts a massless up quark and a large

value of tan �.

The masses of up-type quarks come from the superpotential terms:

Hu
10 10 and '10 �10; (11)

while those of down-type quarks and leptons come from the terms

Hd�5 10; '10 �10 and '�55: (12)
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Because of the SU(5) symmetry, the charged lepton mass matrix will be proportional

to the down quark mass matrix. Deviations will derive from SU(5) breaking and will

depend on the Higgs sector of the (Grand Uni�ed) model. We will assume that this can

be done such that the correct lepton masses are predicted, and thus for convenience, we

shall speak only in terms of quark masses.

The quark content of the SU(5) multiplets are:

10
g
q � f�ugq; u

g
q; d

g
qg

�10
�V

q � fu
�V
q ; �u

�V
q ;

�d
�V
q g

�5
g
q � f �dgqg

5
�V
q � fd

�V
q g;

where g(= 1; 2; 3; V ) is a generation index, and q is the U(1)F charge of the multiplet.

Schematically, the tree-level mass matrices look like

�u1a �u2b �u3
0

�uVd �u
�V
e

u1a
u2b hav-
u3
0

hup-Higgsi onsi
uVd

u
�V
e havonsi hHdi

and

�d1i
�d2j

�d3k
�dVl ( �dV

0

n ) �d
�V
e

d1a
d2b hav-
d3
0

hdown-Higgsi onsi
dVd

d
�V
m havonsi hHui

(d
�V 0

p )

,

where the 6th row and 5th column of the down quark mass matrix represent the optional

(�5; 5) pair. Now, following the above mentioned guidelines on charge constraints, we can

�ll in these matrices.

Our strategy for avoiding large FCNC requires a; b 6= 0. Therefore, any �eld that

appears in one of the �rst two rows of either matrix has a contact interaction with a

charged �eld. However, the up-type Higgs �eld must not interact with U(1)F-charged

particles, so the �rst two rows of the up matrix will be devoid of Higgs vevs. That matrix
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will have a zero eigenvalue, thus predicting a massless up quark! A vanishing up quark

mass is a possible solution to the strong CP problem, as the strong phase is no longer

physical and can be rotated into the up quark �eld via an axial rotation. For complete

details on the viability of a massless up quark, see [17].

To complete the up matrix, we note that if d 6= 0, this matrix would have two zero

eigenvalues. Since we are con�dent that the charm mass is not zero, we set d = 0.

Also, the Froggatt-Nielsen �eld �uV
0
must interact with �u

�V
e through a avon ��e to

receive a mass h��ei much greater than the weak scale. But �uV
0
must interact with Hu

as well if the the up matrix has only one zero eigenvalue. To avoid corrections to the up

Higgs mass of order
~m

4�
the �elds interacting with �uVe must be uncharged. That is, e = 0.

Assuming that all allowed couplings exist, we �nd the up matrix is completely deter-

mined and takes the form:

Mu =

0BBBBBB@

�u1a �u2b �u3
0

�uV
0

�u
�V
0

u1a 0 0 0 0 h��ai
u2b 0 0 0 0 h��bi
u3
0

0 0 hHui hHui 0

uV
0

0 0 hHui hHui h�0i
u
�V
0

h��ai h��bi 0 h�0i hHdi

1CCCCCCA; (13)

where the �elds 103
0
and 10

V
0
have been rotated to remove the (3,5) and (5,3) entries.

For generic couplings, the (4,4) and (5,5) entries have little e�ect on the �nal results.

For convenience, we henceforth set them to zero7. This matrix produces the following

up-type Yukawa couplings in the low energy theory:

�uhHui

0B@ 0 0 ��1
0 0 ��2
��1 ��2 � 1

1CAu; (14)

where

�1 =
h��ai

h�0i

�2 =
h��bi

h�0i

The tildes represent the (order 1) couplings that have not yet been included.

Now we shall attempt to design a down mass matrix with only one additional f �5; 5g
pair. First, to prevent a zero eigenvalue, there must be at least one hHdi entry in one

of the �rst two rows. However, since we wish to produce the small Yukawa couplings

of the �rst two generations dynamically, we place the entry in the 4th column. To do

this, we let l = �b (choosing �a would lead to the same conclusions). Examining the

�rst three columns, we see that in order to avoid a zero eigenvalue, at least two of i, j

7These couplings are relevant when dealing with the '�-term problem.' For details, see our Conclusion.
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and k must be zero. This is in contradiction with our decoupling strategy for avoiding

FCNC, hence ruling out this scenario. One could ask if by setting all i = j = k = 0,

these squarks would be degenerate. However (see Appendix), the degeneracy is broken

by large avor-dependent contributions.

We must include two (�5; 5) pairs in the FN sector. Making similar arguments as those

above, we see our matrix is limited to

Md =

0BBBBBBBBB@

�d1i
�d2j

�d3
0

�dVl
�dV

0

�b
�d
�V
0

d1a 0 0 0 ? 0 h��ai
d2b 0 0 0 ? hHdi h��bi
d3
0

0 0 hHdi ? 0 0

dV
0

0 0 hHdi ? 0 h�0i
d
�V
m h��i�mi h��j�mi h��mi h��l�mi h�b�mi 0

d
�V 0

p h��i�pi h��j�pi h��pi h��l�pi h�b�pi 0

1CCCCCCCCCA
; (15)

where the question marks label undetermined entries. We see that l can be either (�a)
or zero, and any of the avons in the last two rows can be removed.

3.2 A Model

We now present a speci�c example of the above framework that yields the correct quark

mass ratios and CKM angles.

If the up matrix is �xed, the down mass matrix would still allow many choices. We

start by choosing l = �a (l = 0 would work as well). The �rst four entries of the fourth

column of Md are then hHdi, 0, 0 and 0. We want, for simplicity, to limit the number of

avons appearing in the matrices. Again, we can use the freedom o�ered by the down

mass matrix. We can remove one avon from each of the �rst two columns { the entries

(6,1) and (5,2) are taken to be 0. We also can take the entries (5,5) and (6,4) to be 0.

As for the third column one may ask if one could remove the two avons in the entries

(5,3) and (6,3) since it would not generate a zero eigenvalue. However in such a scenario

the value of Vub comes out too small as is explained farther down. We take only entry

(6,3) to be 0. The resultant matrices are

Mu =

0BBBBBB@
0 0 0 0 h��ai
0 0 0 0 h��bi
0 0 hHui �1hH

ui 0

0 0 �1hH
ui 0 h�0i

h��ai h��bi 0 h�0i 0

1CCCCCCA (16)

and
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Md =

0BBBBBBBB@

0 0 0 �3hH
di 0 h��ai

0 0 0 0 �2hH
di h��bi

0 0 hHdi 0 0 0

0 0 �1hH
di 0 0 h�0i

h��m�ii 0 h��mi h�a�mi 0 0

0 h��p�ji 0 0 h�b�pi 0

1CCCCCCCCA
; (17)

where the `�'s and '�'s are coupling constants of order one that cannot be absorbed by

rede�ning the vevs. Assuming h�i � h�i and h�i � hHdi; hHui, we can integrate out

the Froggatt-Nielsen �elds, yielding the 3� 3 fermion mass matrices:

Mu
3
= hHui

0B@ 0 0 �1�1
0 0 �1�2

�1�1 �1�2 1

1CA
and

Md
3
= hHdi

0B@ �3�5 0 �3�3 + �1�1
0 �2�4 �1�2
0 0 1

1CA
with

�1 = �
h��ai

h�0i
; �2 = �

h��bi

h�0i

�3 = �
h��mi

h�a�mi
; �4 = �

h��p�ji

h�b�pi

�5 = �
h��m�ii

h�b�pi

We can now see why the (5,3) entry of Md cannot vanish. The angle Vub is equal

to the inner product vyuvb. The vector vu is the eigenvector of Mu
3
M

uy
3

corresponding

to the eigenvalue equal to the squared mass of the up quark (which is 0) and vb is the

eigenvector of Md
3
M

dy
3

corresponding to the eigenvalue equal to the squared mass of the

bottom quark. We have (up to some normalization factors of order 1)

vu =

0BB@
1

�
�1

�2
0

1CCA

vb =

0B@ �1�1 + �3�3 +O(�3)

�1�2 +O(�3)

� 1

1CA

13



where � is of the order of the �i in the matrices. Typically, � is less than 0:05. It follows:

Vub = �3�3 +O(�3)

If �3 were 0, that is if there were no entry (5,3) in the 6� 6 down matrix, Vub would be of

order 10�4, an order of magnitude too small to meet the experimental range. This short

computation also applies to the general form of the down mass matrix. The �53 �eld must

always interact with one of the 5V �elds. The mass of the right-handed (RH) bottom

squark depends on this interaction. If 5V is charged, the mass of the RH bottom squark

would be of order ~m

4�
. If 5V is uncharged, the mass of the RH bottom squark would be

at the weak scale8.

It remains to evaluate the orders of magnitude of the di�erent �is. We �nd:8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

�2 '

s
mcharm

mtop

�1 ' Vus�2

�4 '
mstrange

mbottom

and �5 '
mdown

mstrange

�4

�3 ' Vub

(�1 � �1) �2 ' Vcb which implies �1 � �1 '
1

2

4 FCNC and CP violation

Several new interactions may contribute to K0 � �K0 mixing and �K , beyond the usual

weak interaction contributions. These usually provide the most stringent constraints on

supersymmetric models. The potentially largest contribution is from a gluino exchange

box diagram: ~

g~

d,s,b
~ ~ ~

g

d,s,b

s

d

d

s

~ ~ ~g~ g~

d,s,b
~ ~ ~

s

d

d

s

d,s,b
~ ~ ~

We wish to compute in the framework of our model the two main contributions to

K0� �K0, namely the contribution of the quarks via the usual weak interactions and the

contribution from the squarks due to the strong interactions. We work with the speci�c

model described in Section 3.2. In this example, we shall �nd that the squark contribution

8The superpotential may contain couplings which contribute to a right-handed bottom squark mass
above the weak scale.
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to the KS �KL mass di�erence is small, both because the �rst two squark generations

are heavy, and because the squark mixing angles amongst the �rst two generations of the

down sector are very small [18]. The largest supersymmetric contribution comes from

the left handed bottom squark. The phase of this contribution is naturally almost real,

and so the contribution to �K is su�ciently small.

To generate CP violation, there must exist at least one complex parameter in the

interaction Lagrangian that cannot be made real by rede�ning �elds. The relevant in-

teractions are listed in the up and down mass matrices (16) and (17). Assuming that all

coupling constants and vevs are complex, suitable rede�nitions of the �elds that do not

receive vevs allow us to make some of the entries in the mass matrices real. However,

two entries cannot be made real. We can choose these to be the (3,3) and (5,3) entries of

the down matrix. The up and down matrices are then (ignoring real coupling constants

of order 1)

Mup =

0BBBBBB@
0 0 0 0 h��ai
0 0 0 0 h��bi
0 0 hHui hHui 0

0 0 hHui 0 h�0i
h��ai h��bi 0 h�0i 0

1CCCCCCA
and

Mdown =

0BBBBBBBB@

0 0 0 hHdi 0 h��ai
0 0 0 0 hHdi h��bi
0 0 �33hH

di 0 0 0

0 0 hHdi 0 0 h�0i
h��m�ii 0 �53h��mi h�a�mi 0 0

0 h��p�ji 0 0 h�b�pi 0

1CCCCCCCCA
;

where �33 and �53 are two complex numbers of modulus 1.

All of the other variables in the matrices are real. The corresponding superpotential

reads

WFN = Hd101a�5
V
�a + ��a10

1

a
�10

�V

0
+ ��b10

2

b
�10

�V

0

+ Hd102b�5
V 0

�b + �33H
d103

0
�53
0
+Hd10V

0
�53
0

+ �0 �10
�V

0
10V

0
+ ��m�i

�51i 5
�V
m + �53��m�5

3

0
5
�V
m (18)

+ �a�m5
�V
m
�5V
�a + ��p�j�5

2

j5
�V 0

p + �b�p5
�V 0

p
�5V

0

�b

+
1

2
Hu103

0
103

0
+Hu103

0
10V

0

Integrating out the heavy �elds, we �nd the following up and down matrices for the light

15



fermions:

Mu
3
= hHui

0B@ 0 0 �1
0 0 �2
�1 �2 1

1CA
and

Md
3
= hHdi

0B@ �5 0 �53�3 + �1
0 �4 �2
0 0 �33

1CA
from which we get the CKM matrix:

V CKM =

0BBBB@
1 �

�1

�2
���

33
�53�3

�1

�2
1 (��

33
� 1) �2

(1� �33) �1 (1� �33) �2 1

1CCCCA :

Only the signi�cant phases have been retained. The phases of �33 and �53 are assumed

to be of order 1. The remaining entries have phases of order 10�2 or less. Such a CKM

matrix yields reasonable values of �mK and �K from the weak interactions.

The contribution of the gluino box to K0 � �K0 mixing remains to be computed. To

compute this requires the squark mass matrix. We consider tree level and one loop mass

terms generated by the e�ective scalar potential.

We assume that all of the avons appearing in one line or column of the mass matrices

are distinct (this is automatically satis�ed if all the standard model �elds have di�erent

charges). This implies that there are no o�-diagonal one-loop corrections to the squark

mass matrix of order:
~m2

16�2
log

 
�DSB

h�i

!

Indeed, if for example a = b, we could have ��a = ��b. The F-term of �10
�V

0
would yield

the interaction:

10
1

a10
2 �

a ��a�
�

�a

from which we could get the one-loop scalar graph:

10a
2

10a
1

φ-a

whose supersymmetry breaking part is of the order of the above correction. The only

one loop corrections to o� diagonal terms come from the supersymmetry breaking part

of scalar graphs like:
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Both left-handed squarks (LH) and right-handed squarks (RH) will contribute to these

processes.

We �rst consider the case of the LH down squarks, since as we shall see their contri-

bution is the largest. At tree level, the masses of the LH down type squarks come from

the hermitian matrix (omitting the vev symbol hi for clarity):

0BBBBBBBBB@

d1 �a d2 �b d3 �
0

dV �

0
d
�V �

m d
�V 0 �

p

d1a ~m2 ��a��b 0 ��a�0 �a�mH
d 0

d2b ~m2 0 ��b�0 0 �b�pH
d

d3
0

m2

weak
�33H

d 2 �33�
�

53
��mH

d 0

dV
0

�2
0

��
53
��mH

d 0

d
�V
m �2a�m 0

d
�V 0

p �2b�p

1CCCCCCCCCA
where we have written only the main contribution to each matrix element.

There are other tree level contributions to the masses of the LH down squarks since some

mixing occurs with the RH down squarks. However, as we note at the end of the present

section, these terms are small and can be ignored for an order of magnitude computation.

As mentioned above, any o�-diagonal entry of the mass matrix may receive a one-loop

contribution. The correction is of order

1

16�2
hAihBi log

 
m2

fermion

m2

scalar

!

The masses appearing in the log are the masses of the heavier scalar particle running in

the loop and of its fermionic partner.

Some loop corrections come from known superpotential interactions between SU(5)

and avon �elds in (18). For instance, from the F-terms of �53
0
and �5V

�a, we get a diagram

that mixes d1a with d
3

0
:

0
3

V
m5

dd
1
a

dH

The resulting term is

�53�
�

33

1

16�2
h��mih�a�mi

~m2

h�a�mi2

Other loop corrections may arise from terms in the avon superpotential. Without

knowing explicitly the avon superpotential, we cannot tell if one speci�c entry receives
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a correction and if so what the vevs hAi and hBi are. We will assume that any o�-

diagonal term in the matrix receives such a correction with a phase of order 1 and

that the vev product is of the order of h�ih�i with
h�i

h�i
' 10�2. This last value is

an overestimate (most likely the vev product is of the order of the product of two �

vevs). For example, assuming a avon superpotential containing the terms CD��a and

CD0��b, we obtain an o�-diagonal term mixing d1a and d
2

b . The loop correction is equal

to �
1

16�2
hDi�hD0i

~m2

h�a�mi2
. We assume that hDi�hD0i is of the same order as h�ih�i.

We may now estimate the angles at the squark-quark-gluino vertex with the quarks

and squarks taken as mass eigenstates. For the LH quarks, the angles are given by the

matrix that diagonalizes Md
3
M

d y
3
:0B@ 1 �(��

53
�3 + �1)�2 �33�1

(�53�3 + �1)�2 1 ��33�2
���

33
�1 ��

33
�2 1

1CA �

0B@ 1 10�3 10�2

1 10�1

1

1CA
O�-diagonal elements in the third line and column have the same order one phase. The

elements (1,2) and (2,1) have a smaller phase of order 10�1.

For the squarks, we �rst integrate out the heavy �elds and then rotate the light squark

mass matrix. Doing so, we �nd the following symmetric matrix as an estimate for the

rotation matrix: 0BBBBBB@
1 �1�2

h�i2

~m2

1

16�2
h�i

h�i

1
1

16�2
h�i

h�i
1

1CCCCCCA �

0B@ 1 10�2 10�4

1 10�4

1

1CA

where the o�-diagonal elements of the third line and column have phases of order 1 and

the entries (1,2) and (2,1) have a phase of order 10�2. The vev h�i is a generic value for
the vevs of �0, �a�m and �b�p, which we assume to be all of the same order. The value

of
h�i

~m
depends on the DSB. A typical value is

h�i2

~m2
= 10. As before,

h�i

h�i
is taken to be

10�2.

The product of the above matrices yields the matrix ZLL at the squark-quark-gluino

vertices

ZLL �

0B@ 1 10�2 10�2

1 10�1

1

1CA ;
where o�-diagonal elements (1,3) and (2,3) have phases which are of order 1 but di�er

by a term of order 10�2. The (1,2) angle has a phase of 10�2.

The contribution of the LH squarks alone to the box diagram is [2]:

h �KjHLLjKi =
1

3
�2sZ

1i �
LL Z

2i
LLZ

1j �
LL Z

2j
LL

�
�
11

36
I1 +

xg

9
I2

�
1

~m2
mKf

2

K ;
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where

I1 =
Z

+1

0

dy
y2

(y + xi) (y + xj) (y + xg)
2

I2 =
Z

+1

0

dy
y

(y + xi) (y + xj) (y + xg)
2

and

xi =
m2

i

~m2

The indices i and j refer to the squarks and run from 1 to 3. The index g stands for the

gluino, whose mass is at the weak scale (xg ' 10�4). Parameters mK , fK and �s are the

K mass, K decay constant and strong coupling constant (mK = 490MeV , fK = 160MeV

and �s (MW ) = 0:12).

Given the above ZLL matrix and taking ~m ' 20TeV, we �nd all contributions to

�mK and �K are within the experimental values. For instance, a LH bottom squark

of mass mweak gives a contribution to �mK of 10�13MeV and to �K of 10�3. Other

possibilities involving �rst or second generations squarks give smaller contributions.

The same computation done with the RH down quarks and squarks give the following

matrix ZRR (again neglecting left-right mixing):

ZRR �

0B@ 1 10�4 10�4

1 10�3

1

1CA ;
where all o� diagonal entries have a phase of order 1. This matrix gives contributions to

�mK and �K well below the experimental bounds.

We now consider the mixing between LH and RH squarks and con�rm that it can be

neglected.

At tree level, a mu term �HuHd generates mixing between d3
0
and �d3

0
and also between

the light squarks, �d3
0
, d1a, and d2b , and heavy squarks, namely dV

0
, �dV

�a and �dV
0

�b. These

terms come with a coe�cient �hHui ' m2

weak
and possibly a phase of order 1. They are

of the same order as the loop corrections previously considered and would not change

the order of magnitude of ZLL and ZRR.

Additional mixing may occur due to the avon superpotential. For instance, the

avon ��b could appear in the avon superpotential in a term ��bDD
0. Assuming that

D and D0 receive a vev, a mixing term between d2b and
�d
�V
0
is generated. Its coe�cient is

cb = hDi�hD0i�. Similarly, via ��a, we discover a mixing term between d1a and
�d
�V
0
could

also be generated (with coe�cient ca equal to a product of avon vevs). This would mean

that when integrating out �d
�V
0
, the entry (1,2) of ZRR would receive a contribution cacb

h�i2 ~m2 .

The previous analysis could be invalidated if ca and cb were large, causing contributions
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to FCNC and CP violation beyond experimental bounds. We must constrain the choice

of the avon superpotential. We assume that the vev product hDihD0i is of the order

of h�ih�i with a small phase (' 10�2) or of the order of h�i2 with a phase of order 1.

If so, the orders of magnitude of ZLL and ZRR are unchanged. These restrictions are

reasonable since most � �elds do not interact directly with a � �eld.

With these restrictions, left-right angles remain small (of the order of 10�3 or less)

except for the mixing angle between d3
0
and �d3

0
which is about 10�2. The contribution to

the gluino box of left-right e�ects is then well below the experimental values.

We may conclude that the framework of our model accommodates the current exper-

imental bounds on FCNC and CP violation for the K system. The important point in

this analysis was to assume that there were no loop corrections to o�-diagonal entries

given by
~m2

16�2
log

 
�2

DSB

h�i2

!

which would generate angles of order 10�1. With such a correction, FCNC are still

within the experimental values. However, CP violation would be much larger than the

experimental bound if the correction came with a phase of order 1.

This analysis is applicable to the B-system. The entries in the third column of ZLL
are large and with a phase of order 1 and the mass of the left-handed bottom squark is

at the weak scale. Therefore, the supersymmetric contribution to CP violation in B� �B

mixing can be as large as the weak interaction contribution[19]. Also new contributions

to CP violating decay amplitudes may arise with signi�cant departures from the SM

predictions. As for FCNC phenomena in B physics, the model provides sizeable new

contributions to the mixing and the B radiative decays, but always keeping below the

experimental results.

Another possible constraint on new sources of CP violation comes from Electric Dipole

Moment (EDM) bounds on the neutron and on atoms. Our model contains a massless

up quark and thus there is no strong CP violation. Though there are several new sources

of CP violation, supersymmetric contributions to EDM's are su�ciently suppressed due

to the large mass of the �rst two superpartner generations.

5 Some Cosmological Considerations

Supersymmetric models, where the messenger sector is identi�ed with the Froggatt-

Nielsen sector and a single U(1) symmetry is used both to give large masses to the

�rst two generations of sfermions and to generate the avor spectrum, are of consider-

able interest [20] from the cosmological point of view. Indeed, this class of low energy

supersymmetry breaking models naturally predicts (superconducting) cosmic strings [21].

The presence of an Fayet-IliopoulosD-term �2 induces the spontaneous breakdown of the

U(1) gauge symmetry along some �eld direction in the messenger sector. Let us denote

this �eld direction generically by ' and its U(1) charge by q'. In this case local cosmic
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strings are formed whose mass per unit length is given by � � �2 [21]. Since � is a few

orders of magnitude larger than the weak scale, cosmic strings are not very heavy. The

crucial point is that some quark and/or the lepton super�elds are charged under the U(1)

group. Let us focus on one of the sfermion �elds, ef with generic U(1)-charge qf , such

that sign qf = sign q'. The potential for the �elds ' and ef is written as

V ( ef; ') = q2'fm2j'j2 + q2ffm2j ef j2 + g2

2

�
q'j'j

2 + qf j ef j2 + �2
�
2

+ �j ef j4; (19)

where we have assumed, for simplicity, that ef is F -at. The parameter � is generated

from the standard model gauge group D-terms and vanishes if we take ef to denote a

family of �elds parameterizing a D-at direction.

At the global minimum h efi = 0 and the electric charge, the baryon and/or the lepton

numbers are conserved. The soft breaking mass term for the sfermion reads

�m2ef = qf (qf � q')fm2; (20)

and is positive by virtue of the hierarchy q' < qf < 0 (recalling fm2 < 0). Consistency

with experimental bound requires �m2ef to be of the order of (20 TeV)
2
or so, which in

turn requires �2 � (4�=g2)fm2 � (102 TeV)2. Notice that �m2ef does not depend upon �2.

Let us analyze what happens in the core of the string. In this region of space, the

vacuum expectation value of the �eld vanishes, hj'ji = 0, and nonzero values of hj ef ji are
energetically preferred in the string core

hj ef j2i = �fm2q2f � g2�2qf

g2q2f + 2�
: (21)

Since the vortex is cylindrically symmetric around the z-axis, the condensate will be of

the form ef = ef0(r; �) ei�f (z;t), where r and � are the polar coordinate in the (x; y)-plane.

One can check easily that the kinetic term for ef also allows a nonzero value of ef in

the string and therefore one expects the existence of bosonic charge carriers inside the

strings. The latter are, therefore, superconducting.

These superconducting cosmic strings formed at temperatures within a few orders of

magnitude of the weak scale may generate primordial magnetic �elds [21] and even give

rise to the observed baryon asymmetry [22]. Indeed, during their evolution, the supercon-

ducting cosmic strings carry some baryon charge. The latter is e�ciently preserved from

the sphaleron erasure and may be released in the thermal bath at low temperatures. In

such a case, the charge carriers inside the strings are provided by the scalar superpartner

of the fermions that carry baryon (lepton) number. Since these scalar condensates are

charged under SU(2)L, baryon number violating processes are frozen in the core of the

strings and the baryon charge number can not be wiped out at temperatures larger than

TEW � 100 GeV. In other words, the superconducting strings act like \bags" containing

the baryon charge and protect it from sphaleron wash-out throughout the evolution of

the Universe, until baryon number violating processes become harmless. This mechanism

is e�cient even if the electroweak phase transition in the MSSM is of the second order

and therefore does not impose any upper bound on the mass of the Higgs boson [22].
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6 Conclusion

We have presented a renormalizable model of low energy avor and supersymmetry break-

ing in which all mass scales are produced dynamically. A U(1) gauge group mediates

large contributions to the masses of the �rst two generations of scalars, of order 20 TeV,

while suppressing the masses of their fermionic partners. Excessive FCNC are success-

fully avoided, in part, by decoupling the scalars of the �rst two families. CP violation

in the kaon system is also predicted to be within experimental bounds. We are able to

produce the observed fermion masses and mixing angles while maintaining perturbative

uni�cation of gauge coupling constants at MGUT. However, we did not explicitly con-

struct a complete model of avon interactions having the correct vacuum, though we

have made it plausible that one could be produced.

Our goal was to produce a model in which the sectors responsible for scalar masses

and fermion masses could be identi�ed. The resulting model, as an unintended conse-

quence, potentially solves at least two major problems of fundamental physics. First, the

model predicts a massless up quark. This is the simplest viable solution to the strong

CP problem. Second, the model predicts the existence of light superconducting cosmic

strings, which could be the source of the magnetic �elds that are observed on the cos-

mological scale. These strings may also be responsible for the baryon asymmetry of the

universe.

Our model su�ers from the same '�-term' problem that exists in most gauge mediated

models [23]. We can naturally generate a �-term via loop corrections if we include, for

example, the termsHu10
V
10

V , Hd
�10
V �10

V
and �10V �10

V
. At one loop, a �-term appears

with coupling constant � � 1

16�2
F

M
, where h�i = M + ��F . As pointed out by Dvali,

Pomarol and Giudice [23], the scalar coupling, B�HuHd, also appears at one loop with

B� �
1

16�2
F 2

M2 � (4��)2, which is too large for natural electroweak symmetry breaking.

It may be possible to adopt the mechanisms of reference [23] to suppress this B� term,

or to produce acceptable � and B� terms via the mechanism of ref. [24].

As the �rst renormalizable and explicit example of the E�ective Supersymmetry [10]

approach to avor and supersymmetry breaking, this model reproduces the success of the

standard model in explaining the observed size of FCNC and absence of Lepton Flavor

Violation (LFV). In fact this model is surprisingly successful, as the supersymmetric

contributions to CP violating e�ects in K � �K mixing, which even with 20 TeV squarks

are potentially 100 times too large, are su�ciently small. The CP violating phases in

Bd � �Bd and Bs � �Bs mixing receive a large nonstandard contribution from left-handed

bottom squark exchange. It remains to be calculated whether any other nonstandard

FCNC, CP violating, and LFV e�ects are large enough to be revealed by new, more

stringent experiments.
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A Flavor Dependent Contributions to Uncharged Squarks

In this appendix, we show explicitly that leaving all three generations of right-handed

down squarks uncharged will not produce a degenerate spectrum. To see this, let us look

at the matrix explicitly. Filling in the remaining entries and rotating �elds to simplify

the matrix we have:

Md =

0BBBBBB@

�d1
0

�d2
0

�d3
0

�dV
�b

�d
�V
0

d1a 0 0 0 0 h��ai
d2b 0 0 0 hHdi h��bi
d3
0

0 0 hHdi 0 0

dV
0

0 hHdi hHdi 0 h�0i
d
�V
m h��mi h��mi h��mi h�b�mi 0

1CCCCCCA (22)

(the e�ects of a non-zero (5,5) element are minimal, so it is set to zero). This matrix

produces the following down-type Yukawa couplings in the low energy theory:

�dghHdi

0B@ 0 ��1 ��1
��3 ��2+ ��3 ��2+ ��3
0 0 � 1

1CA
gh

dh; (23)

where

�3 =
h��mi

h�b�mi
:

To see that, for example, the RH down squarks are not degenerate, we examine the squark

mass (squared) matrix. For our purposes, we can ignore terms proportional to hHdi
(which would be of the same order as the bottom quark mass). In this approximation,

the relevant superpotential couplings are

W �
3X
i=1

�i�5
i
0
5
�V
m��m + �V �5

V
�b5

�V
m�b�m + � �V

�10
�V

e 10
V
0
�0; (24)

and the mass squared matrix is:0BBBBBB@
j�1j

2 j�j2 ��
1
�2 j�j

2
��
1
�3 j�j

2
��
1
�V �

�� 0

��
2
�1 j�j

2 j�2j
2 j�j2 ��

2
�3 j�j

2
��
2
�V �

�� 0

��
3
�1 j�j

2
��
3
�2 j�j

2 j�3j
2 j�j2 ��

3
�V �

�� 0

��V �1�
�� ��V �2�

�� ��V �3�
�� j�V j

2 j�j2 0

0 0 0 0 j� �V j
2 j�0j

2

1CCCCCCA (25)
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where, for simplicity, � = ��m and � = �b�m. This matrix has three zero eigenvalues and

two eigenvalues of order h�i2. The three generations of squarks receive degenerate weak-
scale contributions to their masses from the two loop diagrams in Figure 1 of [4]. However,

the FN �elds receive large supersymmetry breaking contributions to their masses (of orderpfm2). When fm2 is added to the (4,4) component of the matrix, there is one less zero

eigenvalue. For fm2 <� �2 � h�i2 and h�i � h�i, this matrix has two eigenvalues of order

h�i2, and one of order
�
h�i

h�i

�
2fm2 = �2

3
fm2. In order to produce the correct mass ratios

and mixing angles without signi�cant �ne tuning, it turns out that �3 must be of order

10�2. For fm2 � (20TeV)2, the third eigenvalue is of order (200GeV)2, thereby destroying

the weak-scale degeneracy. A more careful analysis reveals additional avor-dependent

contributions at one loop. In fact, the only way to protect this degeneracy is to require

all of the SU(5) multiplets (and hence, all avons) to be uncharged under U(1)F, clearly

a useless choice.
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