Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

Article
Report number arXiv:2401.06360
Title Recent Developments from Feynman Integrals
Related titleRecent developments from Feynman integrals
Author(s) Marzucca, Robin (Zurich U.) ; McLeod, Andrew J (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Page, Ben (CERN ; Gent U.) ; Pögel, Sebastian (U. Mainz, PRISMA) ; Wang, Xing (Munich, Tech. U.) ; Weinzierl, Stefan (U. Mainz, PRISMA)
Publication 2024
Imprint 2023-12-22
Number of pages 11
Note 11 pages, talk given at the conference Matter to the Deepest 2023. arXiv admin note: substantial text overlap with arXiv:2309.07531
In: Acta Phys. Pol. B Proc. Suppl. 17 (2024) 2-A11
DOI 10.5506/APhysPolBSupp.17.2-A11
Subject category hep-th ; hep-ph ; Particle Physics - Theory ; Particle Physics - Phenomenology
Abstract This talk reviews recent developments in the field of analytical Feynman integral calculations. The central theme is the geometry associated to a given Feynman integral. In the simplest case this is a complex curve of genus zero (aka the Riemann sphere). In this talk we discuss Feynman integrals related to more complicated geometries like curves of higher genus or manifolds of higher dimensions. In the latter case we encounter Calabi-Yau manifolds. We also discuss how to compute these Feynman integrals.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: (License: CC-BY-4.0)



Corresponding record in: Inspire


 Zapis kreiran 2024-12-18, zadnja izmjena 2024-12-18


Cjeloviti tekst:
2401.06360 - Download fulltextPDF
document - Download fulltextPDF