Početna stranica > Recent Developments from Feynman Integrals |
Article | |
Report number | arXiv:2401.06360 |
Title | Recent Developments from Feynman Integrals |
Related title | Recent developments from Feynman integrals |
Author(s) | Marzucca, Robin (Zurich U.) ; McLeod, Andrew J (U. Edinburgh, Higgs Ctr. Theor. Phys.) ; Page, Ben (CERN ; Gent U.) ; Pögel, Sebastian (U. Mainz, PRISMA) ; Wang, Xing (Munich, Tech. U.) ; Weinzierl, Stefan (U. Mainz, PRISMA) |
Publication | 2024 |
Imprint | 2023-12-22 |
Number of pages | 11 |
Note | 11 pages, talk given at the conference Matter to the Deepest 2023. arXiv admin note: substantial text overlap with arXiv:2309.07531 |
In: | Acta Phys. Pol. B Proc. Suppl. 17 (2024) 2-A11 |
DOI | 10.5506/APhysPolBSupp.17.2-A11 |
Subject category | hep-th ; hep-ph ; Particle Physics - Theory ; Particle Physics - Phenomenology |
Abstract | This talk reviews recent developments in the field of analytical Feynman integral calculations. The central theme is the geometry associated to a given Feynman integral. In the simplest case this is a complex curve of genus zero (aka the Riemann sphere). In this talk we discuss Feynman integrals related to more complicated geometries like curves of higher genus or manifolds of higher dimensions. In the latter case we encounter Calabi-Yau manifolds. We also discuss how to compute these Feynman integrals. |
Copyright/License | preprint: (License: arXiv nonexclusive-distrib 1.0) publication: (License: CC-BY-4.0) |