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Ultra-peripheral collisions (UPC) are events characterised by large im-
pact parameters between the two projectiles, larger than the sum of their
radii. In UPCs, the protons and ions accelerated by the LHC do not inter-
act via the strong interaction and can be regarded as sources of quasireal
photons. Using the Run 2 data, the ALICE Collaboration has carried
out various measurements of different final-state systems, such as exclu-
sive four pion photoproduction as well as photoproduction of K+K− pairs,
measured for the first time in ultra-peripheral collisions. In addition, vec-
tor meson production in Pb–Pb provides the unique opportunity to carry
out an analogy of the double-slit experiment at femtometre scales, owing
to the interference between the production sources of the two lead nuclei.
These results and prospects for UPC measurements using Run 3 data will
be presented.

1. Introduction

Vector meson photoproduction in p–Pb and Pb–Pb ultra-peripheral col-
lisions (UPCs) [1] is actively being studied at the CERN LHC. In these
events, a photon from one of the two nuclei interacts with a colourless ob-
ject from the other nucleus, resulting in the production of a vector meson.
The ALICE Collaboration has studied J/ψ [2, 3], ψ′, ρ0 [4], K+K− [5] and
more light vector-meson photoproduction. The interest for these processes
is growing since they shed light on nuclear shadowing, gluon saturation, and
more recently gluonic hotspots, and their dependence on energy [6, 7].
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2. ALICE results using Run 2 (2015–2018) data

ALICE has recently presented results for exclusive charged 4π photo-
production [8]. The 4π invariant mass distribution is fitted using either
a single Breit-Wigner or a combination of contributions representing ex-
cited ρ0 states, i.e. ρ(1450) and ρ(1700). The cross sections are compared
to theoretical models [9] and are shown in Fig. 1. The computation for
the combination of ρ(1450) and ρ(1700) (upper panel) is in better agree-
ment with the data. The exclusive K+K− photoproduction results [5] show
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Fig. 1. Comparison of the ρ(1450) and ρ(1700) cross sections (upper panel),

and single-resonance cross section (lower panel), as extracted from the fits to the

invariant-mass distribution of exclusive 4π production [8] and comparison with the

theoretical predictions for a one and two-resonance model [9].

that the sample is a cocktail of resonant and non-resonant contributions, as
shown in Fig. 2. The K+K− invariant mass distribution is measured for
states above 1.1 GeV/c2, away from the ϕ(1020) peak, clear sign that the
energy loss in the tracking material is too significant for the decay kaons
from the ϕ(1020) to be able to reach the Time Projection Chamber (TPC)
using the Inner Tracking System (ITS) that was installed in ALICE during
Run 1 and 2. A new ITS was installed during the Long Shutdown 2 [10],
with reduced material budget and higher precision.

The ALICE Collaboration has also recently provided new results con-
cerning the impact-parameter dependent azimuthal anisotropy in UPCs,
which was measured in coherent ρ0 production [11]. The results are shown
in Fig. 3. The amplitude a2 of the modulation increases as the impact
parameter becomes smaller, which is achieved in UPCs by separating the
data set in neutron emission classes [12]. From the 0n0n to the XnXn class,
the impact parameters lower from a median of about 49 fm to about 18
fm [11,13].
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3. ALICE future opportunities using Run 3 and 4 data

In Run 3 (2022-2026) and Run 4 (starting in 2030) ALICE will collect
significantly higher amounts of data [14], also in previously inaccessible ra-
pidity regions, owing to the installation of new detectors, i.e. Muon Forward
Tracker (MFT) in Run 3 and Forward Calorimeter (FoCal) in Run 4. The
effects of the introduction of a continuous readout, are particularly evident
using UPC selections. While in Run 2 the sample contained about fifty
thousand π+π− candidates in the invariant-mass region of the ρ0, as shown
in Fig. 4(a), which were used in [4] and [11], the data set collected in Run
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Fig. 2. Cross sections for K+K− photoproduction as a function of the K+K−

invariant mass as measured by ALICE [5]. The data are compatible with a cocktail

of resonant and non-resonant contributions.
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Fig. 3. Impact-parameter dependent azimuthal anisotropy measured in coherent

ρ0 photoproduction [11]. The amplitude a2 of the modulation increases as the

impact parameter becomes smaller.
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3 is already order of magnitudes larger in a similar invariant-mass region
with UPC selections, as shown in Fig. 4(b). More precise and even more
(multi-)differential measurements are expected with the new data sample.
In addition, the increased acceptance brought by the addition of MFT and
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Fig. 4. Transverse momentum distribution of ππ pairs selected in Run 2 (left panel)

[4] and Run 3 (right panel), for UPC measurements in ALICE.

FoCal will allow access to observables that are expected to significantly
contribute to observation of the onset of the gluon saturation regime, as
described in [15]. FoCal, which will be installed during Long Shutdown
3, will provide sensitivity to charmonia through their decay to dielectrons,
as shown in Fig. 5. This figure is an ALICE simulation produced using
events from STARlight [16], where the J/ψ and ψ′ peaks are clearly visi-
ble. Finally, the ALICE detector in Run 3 and 4 should be able to collect
enough statistics to measure e.g. light-by-light scattering [17,18], γγ → γγ,
and the anomalous magnetic moment in the tau sector [19], γγ → ττ , al-
lowing for measurements beyond the Standard Model with implications for
axion-like particles (ALPs) [17] and SUSY [19]. New opportunities will also
arise through the usage of machine learning in UPCs, such as anomaly de-
tection through autoencoders for the detection of exotic hadrons such as
tetraquarks [20] and pentaquarks, as described in [21].

4. Conclusions

The UPC program in ALICE brought about interesting new results,
which cover a large range of phenomena, such as nuclear shadowing, gluon
saturation and gluonic hotspots. The most recent measurements were how-
ever limited by their statistical uncertainty. The new incoming Run 3 and
4 data sets will provide abundant amounts of high quality data, allowing
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Fig. 5. ALICE simulations using STARlight [16] showing the potential of FoCal

to measure photoproduced charmonia decaying into dielectrons.

for more differential measurements. These large data sets will also permit
the measurement of the γγ → γγ and γγ → ττ processes in ALICE, giving
prospects for beyond the Standard Model investigations. The new detec-
tors, i.e. MFT and FoCal in Run 3 and 4, respectively, will in addition allow
access to new and exciting rapidity regions.
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