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9RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
10Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

(Dated: October 29, 2024)

We provide the first ab-initio calculation of the Euclidean long-distance window of the isospin
symmetric light-quark connected contribution to the hadronic vacuum polarization for the muon
g − 2 and find aLD,iso,conn,ud

µ = 411.4(4.3)(2.4) × 10−10. We also provide the currently most pre-

cise calculation of the total isospin symmetric light-quark connected contribution, aiso,conn,ud
µ =

666.2(4.3)(2.5) × 10−10, which is more than 4σ larger compared to the data-driven estimates of
Boito et al. 2022 and 1.7σ larger compared to the lattice QCD result of BMW20.

PACS numbers: 12.38.Gc

INTRODUCTION

The relative deviation of the muon’s Landé factor
gµ from Dirac’s relativistic quantum mechanics result,
aµ = (gµ − 2)/2, also called the anomalous magnetic
moment of the muon, is one of the most precisely de-
termined quantities in particle physics. It is sensitive
to virtual contributions of particles which may be out
of reach of direct production in high-energy experiments
and it therefore plays an important role in constraining
new physics. Substantial efforts have been undertaken
at Fermilab (E989) and are planned at J-PARC (E34)
[1] in order to further improve the precision of the exper-
imental determination. In 2021 the Fermilab experiment
released first results [2] which confirmed the previously
best result obtained by the BNL E821 experiment [3] and
reduced the experimental uncertainty from 0.54 ppm to
0.46 ppm. Subsequently they released results for runs
II and III in 2023 which yielded an uncertainty of 0.2
ppm [4]. In 2025 the Fermilab experiment aims to re-
lease their final results pushing the uncertainty down to
approximately 0.14 ppm [5].

Matching the precision of this spectacular experimen-
tal result in a theory calculation of the Standard Model
(SM) contribution to aµ is a substantial challenge and is
currently a work in progress. In 2020 the Muon g-2 The-
ory Initiative published a whitepaper [6–26] which indi-
cated a more than 4σ tension of the experimental result
with the SM. This result relied on a data-driven estimate
of the hadronic vacuum polarization (HVP) contribution

based on e+e− → hadron experimental data. While ex-
isting tensions between experimental data sets had been
taken into account in 2020 by inflating the uncertainties
appropriately, the recent result by CMD-3 [27, 28] in-
creases the tensions to a degree that currently appears
to make a data-driven high-precision evaluation of the
HVP not feasible.

At the same time, lattice methodology is maturing
and is on track to allow for a complete ab-initio the-
ory determination that soon may match the Fermilab
E989 target precision. In this context, it is now com-
mon practice to separate the total HVP contribution
into the Euclidean windows introduced in our previous
work [29], which separate three different regions (short-
distance, intermediate-distance, long-distance) that ex-
actly sum up to the total HVP. Each region has its own
dominant challenges that can best be addressed by tar-
geted calculations optimized separately for each region.

The short-distance region suffers from large discretiza-
tion errors and very fine lattices are needed. The
intermediate-distance region has moderate uncertainties.
The long-distance region suffers from large statistical and
finite-size errors. For lattice calculations using rooted
staggered quarks additional challenges for the contin-
uum limit of the long-distance contribution exist, see,
e.g. Ref. [30].

By now there is very good agreement among sev-
eral lattice collaborations on the short-distance and
intermediate-distance windows [30–42]. The same con-
solidation at high precision is also needed for the long-
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distance region, and the current paper which focuses on
the dominant light-quark connected contribution is a first
step in this direction. The results reported in the follow-
ing are unchanged compared to our unblinding presenta-
tion at Lattice 2024 [43].

In future work, we will improve our previous results
[29] on the quark disconnected contributions, strong-
isospin-breaking (SIB) and QED corrections and improve
our lattice spacing determinations to complete the calcu-
lation of aµ at the next precision frontier. We note that
a combination of lattice and data-driven methodology is
also an interesting approach as suggested in Ref. [29] and
recently demonstrated in Ref. [40].

METHODOLOGY

We address the particular challenges of the long-
distance window by building on ideas of the improved
bounding method [44] and finite-volume exclusive state
reconstruction [45]. These methods are expressed in
terms of the time-momentum representation [46]

aHVP LO
µ =

∞∑
t=0

wtC(t) (1)

with C(t) = 1
3

∑
x⃗

∑
j=0,1,2⟨Jj(x⃗, t)Jj(0)⟩, vector current

Jµ(x) = i
∑

f QfΨf (x)γµΨf (x) with fractional electric
charge Qf , and sum over quark flavors f . The correlator
C(t) at zero temperature admits a spectral representation

C(t) =
1

3

∑
j=0,1,2

∑
n

|⟨n|Ĵj |0⟩|2e−Ent (2)

with zero-momentum vector operator Ĵj , Hamiltonian
eigenstate |n⟩, and energy En for the discrete finite-
volume spectrum. The weights wt can be discretized
in different ways. We use the two approaches de-
scribed in Ref. [31]. We drop the HVP LO la-
bel in the following and separate the window con-
tributions as in Ref. [29] into aµ = aSDµ + aWµ +

aLDµ . We have aSDµ (t0,∆) =
∑∞

t=0 C(t)wt[1 −
Θ(t, t0,∆)], aWµ (t0, t1,∆) =

∑∞
t=0 C(t)wt[Θ(t, t0,∆) −

Θ(t, t1,∆)], and aLDµ (t1,∆) =
∑∞

t=0 C(t)wtΘ(t, t1,∆)
with Θ(t, t′,∆) = [1 + tanh [(t− t′)/∆]] /2. We select
t0 = 0.4 fm, t1 = 1.0 fm, and ∆ = 0.15 fm as suggested
in Ref. [29].

The correlators C(t) are computed with a hierarchical
approximation scheme [29, 47, 48] using locally-coherent
low-modes with exact eigenvalues [49]. In addition, as
described in Ref. [44], we use exact distillation [50, 51]
and have made our code publicly available [52].

In Tab. I we provide a list of all lattice gauge ensem-
bles used in this study. For the physical pion mass en-
sembles with mπL ≈ 5 (96I and C) we use 200 Laplace

ID a−1/GeV L3 × T × Ls/a
5 mπ/MeV mK/MeV mπL

96I 2.6920(67) 963 × 192× 12 131.29(66) 484.5(2.3) 4.7
64I 2.3549(49) 643 × 128× 12 138.98(43) 507.5(1.5) 3.8
48I 1.7312(28) 483 × 96× 24 139.32(30) 499.44(88) 3.9
C 1.7312(28) 643 × 96× 24 139.32(30) 499.44(88) 5.2
4 1.7312(28) 243 × 48× 24 274.8(2.5) 530.1(3.1) 3.8
D 1.7312(28) 323 × 48× 24 274.8(2.5) 530.1(3.1) 3.8
1 1.7312(28) 323 × 64× 24 208.1(1.1) 514.0(1.8) 3.8
3 1.7312(28) 323 × 64× 24 211.3(2.3) 603.8(6.1) 3.9
9 2.3549(49) 323 × 64× 12 278.9(0.6) 531.2(0.7) 3.8
L 2.3549(49) 643 × 128× 12 278.9(0.6) 531.2(0.7) 7.6

TABLE I. List of Nf = 2 + 1 ensembles with parameters
determined in the RBC/UKQCD18 isospin symmetric world
defined in Eq. 3. The ensembles have Iwasaki gauge action
and Möbius [53] domain-wall [54, 55] fermion sea quarks with
b = 1.5 and c = 0.5. The parameters b and c are defined
in Ref. [56]. The scripts generating the new ensembles are
publicly available [52].
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FIG. 1. Reconstruction of the lowest N states CN (t)
compared to the inclusive C(t) for the 96I ensemble with
wLD

t = wtΘ(t, t1,∆). The exponential growth of statistical
noise in C(t) is absent in the reconstruction.

eigenmodes and for all other ensembles we use 60. We
use an operator basis including a local vector current, a
distillation-smeared vector current, and two-pion opera-
tors up to a relative momentum of p = (2, 0, 0)(2π/L) for
the case of 60 Laplace eigenmodes and p = (2, 2, 0)(2π/L)
for the case of 200 Laplace eigenmodes. All operators are
in the Tu

1 , I = 1 irreducible representation since we focus
on the dominant light-quark connected contribution.

In Fig. 1, we demonstrate the reconstruc-
tion of the first N states via CN (t) =

(1/3)
∑

j=0,1,2

∑N
n=1 |⟨n|Ĵj |0⟩|2e−Ent compared to

the full C(t). The figure shows the result of using only
distillation smeared operators (vector and two-pion)
in a generalized eigenvalue problem (GEVP) study
[57, 58] to find the En and optimal operators to project
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to a given state |n⟩. This operator is contracted with
the local vector current to obtain the overlap factor
|⟨n|Ĵj |0⟩|2. The reconstruction CN (t) is used at large
Euclidean times t, where CN (t) = C(t) within statistical
uncertainties.

As in our previous work [31], we perform the analysis
in a blinded manner with five analysis groups A-E. Four
analysis groups A-D have conducted a full analysis, while
one group (E) has focused on cross-checks. Each analysis
group received the correlator data with a blinding factor
applied to each insertion of a local vector current. The
blinding factor was unique to each group and generated
using a hash function based on the group’s name (A-E).
The blinding factors were applied by a script, and no
one in the collaboration saw the blinding factors them-
selves. The process was managed by one of the authors
(CL). Once the analysis groups were ready, relative un-
blinding meetings between two analysis groups were orga-
nized in which the respective methods were scrutinized.
After conclusion of this process the relative blinding fac-
tor was removed between the participating groups. After
the relative unblinding, the collaboration agreed to the
RBC/UKQCD24 prescription for the analysis that will
be described in detail in the following. This procedure
was then applied to a final analysis before the absolute
blinding was removed in a joint meeting on July 19, 2024.
The cross-checks of group E were conducted prior to the
unblinding and focused on results that were not affected
by the blinding factor such as the ratio of CN (t) to C(t)
for which the blinding factor drops out, as well as checks
of individual En that are also not affected by the blinding.
Additional details on the cross-checks and on the various
methods studied by the individual groups are provided
as supplemental material to this letter.

The calculation of C(t) is organized as an expansion
around an isospin-symmetric point [29, 59–63]. In this
work, we provide results for two choices of the expansion
point, following our earlier work [31]. The first choice is
the RBC/UKQCD18 world defined by

mπ = 0.135 GeV , mK = 0.4957 GeV ,

mΩ = 1.67225 GeV , (3)

consistent with Ref. [29]. We also consider a second
choice

mπ = 0.13497 GeV , mss∗ = 0.6898 GeV ,

w0 = 0.17236 fm , (4)

which we label as the BMW20 world [30]. We define
mss∗ as the ground-state energy of the quark-connected
pseudoscalar s̄s meson two-point function. To avoid an
unnecessary inflation of uncertainties when comparing
isospin-symmetric lattice results, we define the above val-
ues without uncertainties. The experimental uncertain-
ties of the physical hadron spectrum enter when QED
and SIB corrections are included.

Results group A with and without finite-volume corrections
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FIG. 2. Results for the ensembles listed in Tab. I with and
without finite-volume corrections applied. For ensemble 64I
a small correction from the partially-quenched point to the
unitary point is added as well, see Ref. [31].

Finite-volume corrections are applied using the
Hansen-Patella formalism [64, 65] in the monopole ap-
proximation. As can be seen in Fig. 2, after applying
finite-volume corrections the results for ensembles that
only differ by the lattice volume (4 and D, 9 and L, 48I
and C) agree within uncertainties. We provide a detailed
study of the agreement as a function of Euclidean time
in the supplemental material. It is noteworthy that for
our largest volume with mπL = 7.6 (L), the finite-volume
corrections are smaller than the quoted statistical uncer-
tainties.

ANALYSIS AND RESULTS

In the following, we describe the RBC/UKQCD24 pre-
scription for determining the light-quark connected con-
tribution to the long-distance window in the isospin sym-
metric limit, aLD,iso,conn,ud

µ .

For each ensemble in Tab. I, the long-distance part of
C(t) is replaced by CN (t) for sufficiently large times such
that they agree within statistical uncertainties. For the
ensembles with 200 Laplace modes N = 10 and for all
other ensembles N = 5. In all cases this allows for a
spectral reconstruction beyond the peak of the rho reso-
nance. Finite-volume corrections are applied as shown in
Fig. 2. These data points are fit jointly to several fit func-
tions. We study both an additive and a multiplicative
combination of discretization and mass-mistuning effects
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FIG. 3. Fit result of f∗ with Zπ
V and without setting f3 = 0.

The data is shown for all ensembles as a function of a2 after
subtracting the fit function without the f0f1a

2 term.

by varying between

f+ = f0 + f1a
2 + f2(w0mπ − (w0mπ)phys)

+ f3(w0mπ − (w0mπ)phys)
2

+ f4(w0mss∗ − (w0mss∗)phys) (5)

and

f∗ = f0(1 + f1a
2)(1 + f2(w0mπ − (w0mπ)phys)

+ f3(w0mπ − (w0mπ)phys)
2

+ f4(w0mss∗ − (w0mss∗)phys)) . (6)

The functional forms as given apply to the BMW20
world and the dimensionless ratios w0mπ and w0mss∗
have to be replaced with mπ/mΩ and mK/mΩ for the
RBC/UKQCD18 world. For both fit functions, we also
study versions with f3 = 0. These four fit forms are
then applied to the data renormalized with two differ-
ent choices for the local vector current renormalization
constant: Zπ

V and Z⋆
V . The former is defined by the

pion charge, the latter by the ratio of local-conserved to
local-local correlators at a distance of 1 fm. This re-
sults in 8 fits that are then combined in a model average.
All fit forms have acceptable p-value and the results are
consistent between using the Akaike information crite-
rion (AIC) [66], a simple χ2 weight, and a flat weight of
all models. We provide individual results in the supple-
mental material. We also studied more divergent chiral
dependencies, however, since our analysis is dominated
by four ensembles at physical pion mass, such variations
have little impact on the fit results. In Fig. 3, we show
the fit result of f∗ with Zπ

V and without setting f3 = 0.
We emphasize that the extrapolation to the continuum
limit is within the statistical uncertainties of the finest
data point.

In Fig. 4, we compare the results obtained by the differ-
ent analysis groups to the RBC/UKQCD24 prescription.
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FIG. 4. Results obtained by the different analysis groups and
the resulting RBC/UKQCD24 prescription.

We observed good agreement prior to the absolute un-
blinding and have identified the reasons for the residual
variations. We note that group D only took the con-
tinuum limit of physical pion mass ensembles. Groups
A and B also verified the consistency of the continuum
limits with and without ensembles 9 and L. The lat-
tice spacing uncertainty due to our more limited knowl-
edge of the Ω− mass is responsible for the larger er-
rors in RBC/UKQCD18 world. Work on a more pre-
cise determination of mΩ is in progress. We observe that
RBC/UKQCD18 and BMW20 worlds are consistent at
the current precision.

Our final results are

aLD,iso,conn,ud
µ = 411.4(4.3)(2.4) × 10−10 ,

aiso,conn,udµ = 666.2(4.3)(2.5) × 10−10 (7)

in the BMW20 world and

aLD,iso,conn,ud
µ = 413.6(6.0)(2.9) × 10−10 ,

aiso,conn,udµ = 668.7(6.1)(2.9) × 10−10 (8)

in the RBC/UKQCD18 world, where the first error is
statistical and the second systematic. The total isospin
symmetric results are obtained by adding our previous
short-distance and intermediate-distance results [31].

In Fig. 5, we compare our results in the BMW20 world
to the literature [74]. Our result for aiso,conn,udµ is more
than 4σ larger compared to the data-driven estimates by
Boito, et al. 2022 [73] which were obtained based on the
data sets that entered the Theory Initiative whitepaper
[6] prior to the release of the CMD-3 data. This observed
shift with respect to the data-driven estimate is consis-
tent with the size of the tension between experiment and
theory for the muon g−2 quoted in the 2020 whitepaper
of the Muon g-2 Theory Initiative [6]. Finally, we note
that our result is also 1.7σ larger compared to the lattice
QCD result of BMW20 [30].
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FIG. 5. This work compared to the literature: Benton et
al. 2024 [67], RBC/UKQCD 2018 [29], ETMC 2018 [68], SK
2019 [69], FHM 2019 [70], Mainz 2019 [71], ETMC 2019 [72],
BMW 2020 [30], LM 2020 [34], Aubin et al. 2022 [35], and
Boito et al. 2022/KNT and Boito et al. 2022/DHMZ [73].

CONCLUSIONS AND OUTLOOK

In this work we compute the long-distance Euclidean
window of the hadronic vacuum polarization for light
quarks in the isospin symmetric limit. This calculation
is particularly challenging and dominates the total un-
certainty of a complete high-precision aHVP LO

µ result ob-
tained from first-principles lattice QCD methods. All cal-
culations were performed in a blinded manner. We find
a large tension with the data-driven approach [73] based
on data sets that were also used in Ref. [6] but also a
smaller tension with the BMW20 result [30]. More work
is needed to complete an ab-initio calculation match-
ing the Fermilab E989 target precision. We are cur-
rently improving our previous estimates for the quark-
disconnected contributions and the QED and SIB cor-
rections including diagrams beyond the electro-quenched
approximation. We expect to match the FNAL E989
target precision upon completion of our HVP program.
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SUPPLEMENTAL MATERIAL

Test of the finite-volume corrections

In Fig. 6, we provide additional details about the excel-
lent agreement of the Hansen-Patella formalism [64, 65]
with the observed behavior in the lattice data for both
physical pion mass and up to mπ ≈ 280 MeV. We use
the monopole ansatz and vary the resonance mass pa-
rameter from mρ = 727 to 770 MeV to generate the un-
certainty estimates. Remarkably, the lattice data agrees
for fixed Euclidean time t in all studied cases very well
with the Hansen-Patella results. Our study extends from
mπL ≈ 4 to mπL ≈ 8 for which the finite-volume correc-
tions are smaller than the statistical uncertainties of the
lattice result.

Distinct features of individual analysis groups

In the following, we summarize the main distinct fea-
tures of the individual analysis groups that were identi-
fied during the relative unblinding:

• Group A provided a lattice spacing determination
that was already used in Ref. [31].

• Group B provided an independent lattice spacing
determination, which did not include an ansatz of
w0 = wcont

0 + a2wslope
0 constraining the continuum

extrapolation of w0 in the global fit. This effect is
responsible for the larger statistical noise of group
B compared to group A.

• Groups A and B implement model averaging and
compared flat and AIC weights with consistent re-
sults. More details are provided in the following
section.

• Comparing group C and group A, there are three
positive 1σ standard deviation shifts for ensembles
48I, C, and D for group C’s analysis compared to
group A. If group A adds these shifts to the anal-
ysis, the results of groups A and C can be brought
into exact agreement. Group C did not propagate
the lattice spacing uncertainty for ensembles C, D,
4, 1, 3, 9, L, which is the reason for the smaller
uncertainties compared to group A.

• Group D used a third independent lattice spacing
determination from a global fit. The lattice pa-
rameters are in good agreement with the results of
group A.

We also provide an example of the cross-checks that were
performed prior to relative unblinding in Fig. 7.

Model averaging

The individual fit results described in the main text of
the manuscript for the RBC/UKQCD24 prescription are
shown in Fig. 8. We note that the variation of the fits is of
the size of the statistical uncertainties. Fits that include
a pion mass curvature term are preferred, however, the
p-value of fits using a linear pion mass dependence is not
negligible.

We perform model averaging by considering a prob-
ability P (M |D) of a given model M given the data D
that is either given by the AIC, a χ2 term only, or a flat
weight of constant P (M |D). For the AIC, we use

P (M |D) ∝ e−
1
2χ

2−k (9)

with number of fit parameters k and the proportionality
constant chosen such that

∑
M P (M |D) = 1. Expecta-

tion values of functions f of common parameters p are
defined by

⟨f(p)⟩ =
∑
M

⟨f(p)⟩MP (M |D) , (10)

where ⟨·⟩M is the expectation value within a model M .
The total variance of f(p) is

⟨f(p)2⟩ − ⟨f(p)⟩2 (11)

=
∑
M

⟨f(p)2⟩MP (M |D) −

(∑
M

⟨f(p)⟩MP (M |D)

)2

=
∑
M

σ2
f(p),MP (M |D)

+
∑
M

⟨f(p)⟩2MP (M |D) −

(∑
M

⟨f(p)⟩MP (M |D)

)2

with

σ2
f(p),M = ⟨f(p)2⟩M − ⟨f(p)⟩2M . (12)

When quoting uncertainties from the model averaging
procedure we quote the first line

σ2
f(p),stat =

∑
M

σ2
f(p),MP (M |D) (13)

as the statistical variance and the second line

σ2
f(p),sys =

∑
M

⟨f(p)⟩2MP (M |D)

−

(∑
M

⟨f(p)⟩MP (M |D)

)2

(14)

as the systematic variance. By construction the statisti-
cal and systematic variance add to the total. We show
in Fig. 9 that the results are largely independent of the
specific choice of P (M |D).
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FIG. 6. We show the difference of ensemble pairs in the time-momentum representation which only differ by the lattice volume
and compare the result to the Hansen-Patella formalism in the monopole ansatz. In the top left panel, we show the integrand
for ensembles C and 48I at physical pion mass and in the top right panel, we show the partial sum

∑t
t′=0 wt′C(t′) for the same

ensembles. The bottom row shows the partial sums of the integrands for ensembles with pion mass approximately equal to 280
MeV from mπL ≈ 4 to mπL ≈ 8.
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13 / 16FIG. 8. Result of the individual fits of the RBC/UKQCD24

prescription in the BMW20 world. The f+ fits are denoted
as +a2, the f∗ fits are denoted as ∗a2. The fits with f3 = 0
are denoted by the absence of the mpi2 term. The fits using
Zπ

V are denoted by ZV and the fits using Z⋆
V are denoted by

ZV*. The top panel shows the fit results and the bottom
panel shows the corresponding p-values.
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FIG. 9. We show the final fit results in the RBC/UKQCD24
prescription in the BMW20 world for different model proba-
bilites P (M |D) in the model averaging procedure.
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