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1. Introduction

The massive operator matrix elements (OMEs) [1, 2] and massive Wilson coefficient of deep-
inelastic scattering [3–6] in the asymptotic region 𝑄2 � 𝑚2, with 𝑚 the heavy quark mass,
have been calculated in the single-mass case to three-loop order in Quantum Chromodynamics
(QCD). To two-loop order these OMEs have been computed in Refs. [1, 7–20]. At three-loop
order seven unpolarized massive OMEs, 𝐴NS

𝑞𝑞,𝑄
, 𝐴PS

𝑄𝑞
, 𝐴PS

𝑞𝑞,𝑄
, 𝐴𝑄𝑔, 𝐴𝑞𝑔,𝑄, 𝐴𝑔𝑞,𝑄 and 𝐴𝑔𝑔,𝑄, and

the corresponding polarized OMEs contribute. First a series of Mellin moments was calculated
in Ref. [21]. The computation of theses functions for general values of Mellin-𝑁 followed in
Refs. [15, 16, 19, 22–31]. Two-mass corrections contribute starting from two-loop order, i.e. at
next-to-leading-order (NLO), cf. [32], as factorizable terms. From three-loop order onward also
irreducible two-mass terms contribute, cf. Refs. [2, 33–36]. The last missing term of this class
will be published soon [37]. Also, for charged current structure functions a series of heavy-flavor
corrections was calculated [38–41]. The massive Wilson coefficients depend on the massless three-
loop unpolarized Wilson coefficients [42, 43] and the polarized ones [43]. The evolution of the
massless parton densities to three-loop order depend on the unpolarized [25, 43–56] and polarized
[57–59] three-loop anomalous dimensions.

The technical aspects of the calculation of these massive OMEs consist of a series of standard
steps, described e.g. in Ref. [30]. The integration-by-parts reduction has been performed using
Reduze 2 [60, 61]. We used also more special analytic methods, such as summation and guessing
methods applied to a very large number of moments [62–69], special higher transcendental function
treatment of different kind [70–87], differential equation methods for first-order-factorizing systems
[88] and non-first-order-factorizing systems [89, 90], including (general) semi-analytic solutions
[91, 92]. In our calculations the use of the packages Sigma [62–64], HarmonicSums [70–87],
OreSys [93–95], and others [96, 97] played an important role.

The present note is organized as follows. In Section 2 we present the three-loop single-mass
contributions at next-to-next-to-leading order (NNLO) to the structure function 𝐹2(𝑥, 𝑄2) for the
first time. It is an important ingredient for precision QCD fits of the deep-inelastic World data to
determine the strong coupling constant 𝑎𝑠 = 𝛼𝑠/(4𝜋), cf. [98–101] and of the parton distribution
functions (PDFs), [102]. To obtain the same results for the polarized structure functions one needs
also PDFs evolved in the Larin scheme. This is discussed in Section 3. The three-loop massive
OMEs also allow one to derive the matching relations in the variable flavor number scheme (VFNS)
at three-loop order, which is presented in Section 4. Section 5 contains the conclusions.

2. The Single-Mass Heavy-Flavor Contributions to 𝑭2(𝒙, 𝑸
2)

The current results on the three–loop massive OMEs allow us to compute the structure function
𝐹2(𝑥, 𝑄2), including the massless and single-mass heavy-flavor corrections due to 𝑐- and 𝑏-quarks
at large enough scales 𝑄2. The massive OMEs and massive asymptotic Wilson coefficients are
calculated for quark masses in the on-shell scheme, 𝑚𝑐 = 1.59 GeV, [104], and 𝑚𝑏 = 4.78 GeV
[105]. It has been shown in Ref. [1] that the criterion 𝑄2 � 𝑚2, for which the asymptotic structure
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function represents the full structure function 𝐹2(𝑥, 𝑄2) at the 1%-level is fulfilled by 𝑄2/𝑚2 ≥ 10,
i.e. for 𝑄2 ≥ 25 GeV2 in the case of charm at NLO.1
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Figure 1: Left panel: the massless contributions to the structure function 𝐹2 (𝑥, 𝑄2) at NNLO using the PDFs
of Ref. [103]. Right panel: The ratio of the NNLO single-mass charm and bottom contributions to 𝐹2 (𝑥, 𝑄2)
to its total value. Dotted lines: 𝑄2 = 25 GeV2; dashed lines: 𝑄2 = 100 GeV2; full lines: 𝑄2 = 10000 GeV2.

In Figure 1 we present both the prediction for the massless contributions to the structure
function 𝐹2(𝑥, 𝑄2) as well as for the single-mass 𝑐 and 𝑏-quark contributions at NNLO for a wide
range in the kinematic variables Bjorken 𝑥 and the virtuality 𝑄2. The fraction of the (virtual and
real) heavy quark contributions vary from ∼ 25% to 40% at 𝑥 = 10−4 for 𝑄2 in the range between
25 GeV2 and 104 GeV2 and the contribution falls towards large values of 𝑥. Here five different
massive Wilson coefficients contribute.

Already in 1990 the massive OME 𝐴𝑄𝑔 has been investigated in its ultimate small 𝑥 limit to
any order in 𝑎𝑠, using methods of 𝑘⊥-factorization [106]. In 1995 the respective expansion term of
𝑂 (𝑎2

𝑠) has been confirmed by expanding the complete NLO result in Ref. [1]. After 34 years we
have now confirmed also the 𝑂 (𝑎3

𝑠) term for the first time in Refs. [30, 31]. One obtains

𝑎
(3) ,𝑥→0
𝑄𝑔

(𝑥) = 64
243

𝐶2
𝐴𝑇𝐹 [1312 + 135𝜁2 − 189𝜁3]

ln(𝑥)
𝑥

(1)

for the constant part of the unrenormalized three-loop OME 𝐴
(3)
𝑄𝑔

. Here 𝐶𝐴 = 𝑁𝑐 , 𝑇𝐹 = 1/2, 𝐶𝐹 =

(𝑁2
𝑐 − 1)/(2𝑁𝑐) denote the color factors, with 𝑁𝑐 = 3 for QCD, and 𝜁𝑘 are the values of Riemann’s

𝜁-function at integer argument, 𝑘 ≥ 2. However, this term does not describe the small 𝑥 behaviour,
neither of the massive OME nor of the structure function, due to very large sub-leading small 𝑥
corrections, as the numerical analysis in Ref. [31] shows. This is a quite common observation for
a long list of BFKL predictions.2 Already in Ref. [25] we have computed the pure-singlet OME
𝐴
(3) ,𝑃𝑆
𝑄𝑞

and derived the corresponding quantity 𝑎
(3) ,𝑃𝑆,𝑥→0
𝑄𝑞

(𝑥) and its leading small 𝑥 limit. It
is related to (1) through rescaling by the factor 𝐶𝐹/𝐶𝐴, as has been found by an explicit analytic
calculation now.

1This criterion may be different in the case of other structure functions.
2For a survey, see Ref. [107].
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3. Polarized Parton Distributions in the Larin Scheme

The three-loop massless [43] and massive Wilson coefficients in the polarized case were calculated
in the Larin scheme [108, 109]. Currently it is not possible to construct the transformation into the
MS scheme at three-loop order for them. However, the polarized structure function 𝑔1(𝑥, 𝑄2), as an
observable, can be expressed in terms of the Wilson coefficients and parton distributions [110] in
the Larin scheme. The scaling violations of the polarized massless parton densities are described
in this scheme as well by using the corresponding anomalous dimensions [57, 59]. In Ref. [110]
the polarized parton distribution functions have been provided in the Larin scheme up to NNLO
recently.

Starting at NLO the scale evolution is different in the Larin and the MS scheme. We illustrate
this in Figure 2 for the ratio 𝑟 = 𝑓 Larin/ 𝑓MS − 1 at NNLO. The effects are larger for the quarkonic
distributions than for the gluon distribution. In the latter case they are caused by mixing effects
with the quarkonic anomalous dimensions only, since Δ𝑃

(1,2)
𝑔𝑔 is the same in both schemes. In the

large 𝑥 limit the anomalous dimensions in both schemes approach each other.
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Figure 2: The relative change of the polarized parton distribution functions Δ8 (𝑥, 𝑄2) = Δ𝑢(𝑥, 𝑄2) +
Δ𝑑 (𝑥, 𝑄2) and Δ𝐺 (𝑥, 𝑄2) comparing the evolution in the MS scheme and the Larin scheme. Dotted line:
𝑄2 = 100 GeV; dashed line: 𝑄2 = 1000 GeV; full line: 𝑄2 = 10000 GeV; from Ref. [110].

For the quark distributions the relative change in the small 𝑥 region, 𝑥 ∼ 0.001, may reach 10–15%,
while for the gluon distribution the corresponding effect amounts to 𝑂 (3%). High precision QCD
fits in the polarized case therefore require to use Larin-scheme PDFs.

4. The Single-Mass Variable Flavor Number Scheme

The single-mass three-loop massive OMEs allow one to construct the corresponding matching
relations in the VFNS to three-loop order. The principal structure of the matching relations has
been given in Ref. [10] and was corrected in Ref. [21]. The VFNS relates the massless parton
densities with 𝑁𝐹 massless quark flavors to the ones of 𝑁𝐹 + 1 massless quark flavors in the region
𝑄2 � 𝑚2

𝑄
, where 𝑚𝑄 is the mass of the heavy quark becoming effectively massless. In course of

this, one also obtains massive quark distributions, 𝑓𝑄 (𝑥, 𝑄2) + 𝑓�̄� (𝑥, 𝑄2). The relations are derived
from the structure functions at high scales 𝑄2 in the fixed flavor number scheme and are determined
by the process-independent massive OMEs. It has been shown in Refs. [1, 9, 16–18] at two-loop
order for the cases in which the complete heavy-quark-mass dependence is known analytically that
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the effective massless approach in the case of charm and bottom quarks only applies at high scales
𝑄2 and neither at the scales 𝑚2

𝑐 nor 𝑚2
𝑏
. The new PDFs obtained in the VFNS are inserted into the

massless representation of the corresponding structure functions. If one analytically expands the
resulting expressions in the coupling constant 𝑎𝑠 one obtains again the structure functions in the
fixed flavor number scheme to the order one worked in. The differences in the VFNS to the result in
the direct calculation are of higher order in 𝑎𝑠. Depending on the matching scale chosen, different
size pile-up effects due to these terms are obtained.

An implementation of the three-loop matching relations will be given in Ref. [111]. In Figure 3
we illustrate the charm distribution 𝑓𝑐 (𝑥, 𝑄2) + 𝑓�̄� (𝑥, 𝑄2) normalized to the singlet distribution for
𝑁𝐹 = 3. The effects grow with 𝑄2 due to the logarithmic terms ln(𝑚2

𝑄
/𝑄2) in the matching

relations.
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Figure 3: The distribution 𝑓𝑐 (𝑥, 𝑄2) + 𝑓�̄� (𝑥, 𝑄2) normalized to ΣNF=3 (𝑥, 𝑄2). Dotted lines: 𝑄2 = 30 GeV2;
dashed lines: 𝑄2 = 100 GeV2; full lines: 𝑄2 = 10000 GeV2; from Ref. [111].

5. Conclusions

We finished the calculation of all single-mass OMEs and asymptotic inclusive heavy-flavor Wilson
coefficients to three-loop order and made numerical predictions for the structure function 𝐹2(𝑥, 𝑄2).
Very soon, also the two-mass corrections will also be finished both in the unpolarized and polarized
cases. In the polarized case we worked in the Larin scheme and provided a first set of NNLO parton
densities. Furthermore, the single-mass matching relations in the VFNS are now available both in
the unpolarized and polarized cases.

The present results are of special importance for phenomenological predictions of the precision
physics at future facilities such as the EIC [112] and LHeC [113, 114], but also for re-analysis of
the HERA [115] and other World deep-inelastic data, as well as for inclusive measurements at the
LHC in its high luminosity phase at CERN, and its future successor, the FCC [116]. In the flavor
non-singlet case, the relations for a QCD-fit in the unpolarized and polarized cases were given in
[117] in the scheme-invariant representation, which allows a direct fit of 𝑎𝑠 (𝑀𝑍 ) using measured
input distributions at the starting scale 𝑄2

0.
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