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Abstract

We initiate the S-matrix bootstrap analysis of theories with non-invertible symmetries in

(1+1) dimensions. Our previous work [1] showed that crossing symmetry of S-matrices in

such theories is modified, with modification characterized by the fusion category data. By

imposing unitarity, symmetry and the modified crossing, we constrain the space of consistent

S-matrices, identifying integrable theories with non-invertible symmetries at the cusps of

allowed regions. We also extend the modified crossing rules to cases where vacua transform

in non-regular representations of fusion category, utilizing a connection to a dual category C∗
M

and Symmetry Topological Field Theory (SymTFT). This highlights the utility of SymTFT

in the analysis of scattering amplitudes.
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1 Introduction and summary

1.1 Introduction

The idea of constraining quantum field theories using fundamental principles, such as symmetry,

unitarity and causality originated in the 1960s. At that time, researchers aimed to understand the

physics of strong interaction without knowing the underlying Lagrangian. These early efforts were

eventually set aside following the discovery and successful application of quantum chromodynamics

(QCD). However this idea, known as the S-matrix bootstrap program, has recently been revived

[2,3]. Today it serves as a tool to explore the landscape of quantum field theories (QFTs), rather

than focusing on a specific theory as was initially intended.

In parallel, a similar idea has been applied to conformal field theories (CFTs), which are quantum

field theories with conformal symmetry. This approach, often called the conformal bootstrap

program, achieved impressive success in 1+1 dimensions in the 1980s. More recently, with the aid

of judicious numerical implementation, it has made remarkably precise predictions for theories of

physical interest in higher dimensions, such as the Ising model in 2 + 1 dimensions [4].

Both bootstrap programs share a common philosophy: they use fundamental principles as inputs

to delineate regions in theory space consistent with these principles. However, there is also a key

difference. Most CFTs are “isolated,” meaning small deformations typically break conformal

symmetry. Partly due to this property, in the best cases the conformal bootstrap identifies a tiny

“island” in parameter space, with theories of physical interest at the boundary of this region. In

contrast, the landscape of quantum field theories is much broader. Most quantum field theories

allow for continuous deformations by adjusting parameters like particle masses and interaction

strengths. Thus, there is no guarantee that theories of our interest lie near the boundary1 of the

allowed region determined by the S-matrix bootstrap.

To narrow down the landscape carved out by the S-matrix bootstrap, one needs to input theory-

specific features. This can include data from observables, either computed from a theory or

obtained from experiments. Alternatively, one can use detailed structures of the theory that

distinguish it from others. In this paper, we take the latter approach; we discuss the interplay

between the S-matrix bootstrap and a refined notion of symmetries intensively studied in the past

few years, called non-invertible symmetries.

Non-invertible symmetries generalize the notion of symmetries in QFT. The key insight that

led to this generalization is to identify symmetry operators with extended topological operators

[5]. From this perspective, standard symmetries are special cases in which topological operators

follow a group-like multiplication law, and more generally they obey categorical fusion algebras.

Studies in recent years have shown that non-invertible symmetries are more common than initially

thought [6–12]. However they are (or at least some of them are) still less ubiquitous than standard

symmetries: for example, N = 4 supersymmetric Yang-Mills theory has a non-invertible S-duality

symmetry only when the coupling constant is tuned to a particular value [10] and requiring it to

survive selects a subset of relevant deformations [13]. Thus incorporating such symmetries in the

bootstrap program can potentially help narrow the search space and improve the bounds.

In addition, we showed in the previous paper [1] that non-invertible symmetries have direct

1Important exceptions are theories in (1 + 1) dimensions for which integrable theories were found to lie at the

boundary of the allowed region.
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implications on the S-matrices. Specifically, in 1+1 dimensional theories with non-invertible sym-

metries, crossing symmetry is modified, with the modification characterized by the categorical

data of these symmetries:

Sabdc(s) =

√
dadc
dbdd

Sbcad(t) . (1)

Here s and t are Mandelstam variables and da,b,c,d are quantum dimensions of the relevant fusion

category [14–16]. See Section 2 for details.

Building on this finding, in this paper we initiate the S-matrix bootstrap for such theories by

imposing unitarity and modified crossing relations. Below we outline several additional reasons

why this analysis is of physical interest:

Modified crossing disallows trivial scattering. A simple yet important observation is that

the modified crossing relation (1) cannot be satisfied by a trivial (non-interacting) S-matrix S(s) =

±1; this means that the modified crossing alone ensures that the theory is interacting. This

contrasts with the standard S-matrix bootstrap, where unitarity and crossing allow for a non-

interacting S-matrix, necessitating additional steps to focus on physically interesting theories.

This feature can be potentially useful in higher dimensions, where methods to isolate physically

relevant theories are less developed compared to 1 + 1 dimensions. We will come back to this

point in Section 4 (Conclusion).

Bootstrap from IR to UV. Theories with non-invertible symmetries provide a unique arena

for the bootstrap program, offering the possibility to bootstrap the dynamics from infrared (IR)

to ultraviolet (UV), defying the standard renormalization group paradigm. As we explain be-

low, non-invertible symmetries impose nontrivial constraints at every energy scale and the data

bootstrapped at lower energy scale can be used as inputs for the bootstrap at higher energy scale.

1. TQFT bootstrap: In the deep IR, non-invertible symmetries constrain the number of vacua,

often disallowing a single vacuum. The number of vacua and their symmetry actions can

be determined by bootstrapping topological quantum field theory (TQFT). See [17–20] for

recent analysis.

2. S-matrix bootstrap: The TQFT data bootstrapped in the IR determine the modified crossing

relation, a fundamental input for the S-matrix bootstrap, as shown in our previous work [1]

and this paper. In addition, non-invertible symmetries give constraints on the spectrum

of particles as discussed in [21]. By bootstrapping the S-matrix using these data, one can

constrain the dynamics of the theory along the renormalization group (RG) flow.

3. Integrable bootstrap: In the S-matrix bootstrap, integrable S-matrices often appear at the

boundary of the allowed region. These S-matrices can be used to determine the finite volume

spectrum of the theory through the Thermodynamic Bethe ansatz (TBA) [22]. Alternatively,

one can impose the Yang-Baxter equation and look for integrable S-matrices directly.

4. Conformal bootstrap: By taking the UV limit of the finite volume spectrum, one can infer

the spectrum of operators in the UV CFT. This data can then be used to constrain the UV

CFT via the conformal bootstrap.
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4∗. Form factor bootstrap: Even if integrable S-matrices are not found, progress can be made

using the form factor bootstrap, see [23–26] for recent discussions. The resulting UV data

can then be used in the conformal bootstrap. (See also [27] for a different approach that

combines non-invertible symmetries and the conformal bootstrap.)

In this paper, we focus on the S-matrix bootstrap analysis. The interplay with integrability and

TBA is a subject of the ongoing work [28].

1.2 Summary

Let us now summarize the punchlines of our paper.

Vacua in general representations. In our previous paper, we focused on the cases where

vacua in the IR transform as the regular representation of the fusion category C. Physically,

they correspond to the complete spontaneous symmetry breaking of C. In Section 2, we extend

our analysis to vacua transforming in general representations of C, which correspond to partial

symmetry breaking2 of C, by identifying irreducible representations with simple lines in a dual

category C∗
M . Specifically, we derive Ward identities and modified crossing rules applicable to

these broader cases. We will encounter one such example in Section 3.4 as an S-matrix saturating

the bootstrap bound for Fibonacci fusion category.

Symmetry action on kinks and modified crossing from SymTFT. In Section 2.5, we

develop a formalism to study symmetry actions on kinks interpolating between different vacua

and their scattering amplitudes using Symmetry Topological Field Theory (SymTFT). SymTFT

offers a universal and “holographic” framework for studying symmetries and anomalies. Its key

advantage is decoupling theory-specific dynamics from the categorical structures of symmetries

and anomalies. Applied to our context, it leads to a clean derivation of the symmetry action

on kinks and their modified crossing rules, including the extension to general representations

mentioned above. Furthermore, SymTFT can naturally extend to higher dimensions. Thus we

hope that the results in this paper lay the groundwork for higher-dimensional generalizations of

modification of crossing rules due to categorical symmetries.

S-matrix bootstrap for An and Fibonacci fusion categories. By imposing the modified

crossing rules together with unitarity and analyticity, we perform the S-matrix bootstrap analysis

in Section 3. We focus on two well-known examples: the An symmetry category, which is the

symmetry preserved by e.g. the ϕ1,3 deformation of unitary minimal models3 Mn, and the smallest

non-invertible symmetry category, the Fibonacci fusion category (Fib). In the former case we

perform the bootstrap analysis for the regular representation and the minimum spectrum required

by symmetry, that is the set of kinks interpolating between neighboring vacua and no other

stable particles such as bound states, and find that the known integrable models studied by

Zamolodchikov [30] sit at vertices of the carved out parameter space. In the Fibonacci case, there

are two vacua and the minimum spectrum consists of a kink, antikink and a breather which can

2See [17,19,20,29] for the classification of gapped phases with various symmetry breaking patterns.
3In the simplest non-invertible case, A4 = Z2Tambara-Yamagami is the symmetry of Ising CFT.
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be interpreted as a kink-antikink bound state with a cubic coupling g. Once more integrable

theories are found sitting at vertices of the allowed space: the ϕ2,1 deformation of the tricritical

Ising CFT [31] and the 3-state Potts CFT deformed by the relevant operator Z + Z∗. The latter

model is located at a vertex of the g = 0 slice of the allowed space, where we see a symmetry

enhancement to Fib× Z2.

Several future directions are discussed in Section 4. A few appendices are included to explain

technical details.

Note Added: While this article was in preparation, the work [32], which has some overlap with

Section 2, appeared in arXiv. We also became aware of related upcoming works [33, 34], which

also have overlap with Section 2. We are grateful to the authors of [33, 34] for communications

prior to their publications.

2 Non-invertible symmetries and kink scattering

The non-invertible symmetries discussed in this paper are spontaneously broken in the IR, at

least partially, resulting in multiple degenerate vacua. This is due to anomalies, which forbid a

unique gapped ground state. Stable particles around such degenerate vacua are typically kinks

that interpolate between them.

In this section, we derive constraints on scattering amplitudes of these kinks imposed by non-

invertible symmetries, which we will use in the bootstrap analysis in Section 3. Specifically, we

extend our previous work [1] to cases where IR vacua transform in general representations of the

fusion category C.
Section 2.1 begins with a brief review of fusion categories to establish the necessary notation.

Our conventions will follow those in [15,16]. For more comprehensive introductions to the subject,

we recommend [6, 35–37]. Section 2.2 summarizes the fundamental concepts required to discuss

symmetry actions on gapped vacua in 1+1 dimensions following [19], specifically focusing on C-
symmetric topological field theories (TFTs). Next, in Section 2.3, we discuss kinks interpolating

between different vacua and study how they organize into a multiplet of the fusion category. A

clear physical formulation of this problem was recently given in [21], and we build upon their

results by providing a way to identify irreducible multiplets with simple lines in a dual category

C∗
M. Section 2.4 presents several concrete examples relevant to the subsequent analysis. Finally

in Section 2.5, we rephrase these concepts from the perspective of SymTFT, based on recent

developments [33,34,38]. Using this SymTFT framework, we derive Ward identities and modified

crossing rules for general C-symmetric S-matrices, setting the stage for the bootstrap analysis that

follows.

2.1 Categorical symmetry in 1 + 1 dimensions

In 1+1 dimensional QFTs, symmetry operations need not be group-like. Instead, they are de-

scribed by the more general structure of a (unitary) fusion category C [14]. A (simple) object L
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in C is an (indecomposable) topological line of the QFT, i.e., a line operator that commutes with

the stress tensor Tµν .

Fusion of lines. Two lines L and L′ can be fused to form a new line L × L′, with the fusion

product also belonging to C:

L L′

=
∑
L′′

NL′′

LL′

L′′
(2)

The fusion coefficients NL′′

LL′ are non-negative integers representing the dimension of the vector

space of trivalent topological junctions4:

x ∈ V L′′

LL′ :

L L′

L′′

x

(3)

By a judicious choice of the basis of junctions, the orthogonality and completeness relations for

these vector spaces take the form:

L

L′

Lu Lv

x

y

=

√
dLudLv

dL
δLL′δx y

L L L′

=
∑
L′′, x

√
dL′′

dLdL′

L

L

L′

L′

L′′x

x

(4)

Lines are typically oriented, with the orientation reversal L∨ being the unique line in C such that

L × L∨ = 1+ . . . .

In what follows, we will make the following simplifications:

• We will omit the label x of the basis vectors of junctions since NL′′

LL′ = 0 or 1 in our examples,

resulting in no loss of generality.

• We will focus on cases where lines are self-dual (i.e. L = L∨). Thus we will dispense with

orientation to simplify notation.

Quantum dimensions. The expectation value of a loop gives the so-called quantum dimension

dL of the line L

L = dL

(5)

4This can be shown by considering radial quantization around the junction. See [6] for details.
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It is possible to prove that dL ≥ 1, with the inequality saturated if and only if the L line is

invertible, i.e. it is an element of some (possibly non-abelian) symmetry group.5

F-symbol and pentagon equation. The fusion product is associative: (L × L′) × L′′ =

L × (L′ × L′′), which implies
∑

Lu
NLu

LL′NL′′′

LuL′′ =
∑

Lv
NLv

L′L′′NL′′′
LLv

. At the level of junction spaces,

this requires the existence of an isomorphism F , called the associator or F-symbol of C:

L

L′′′

L′ L′′

=
∑
Lv

[
FLL′L′′

L′′′

]
LuLv

Lu

L′′

L′′′

L′L

Lv

(6)

The F -symbols are strongly constrained by the pentagon equation [42], which schematically reads

⇐ ⇒
⇐

⇒ ⇒

(7)

It is known that solutions to these equations modulo gauge transformations (i.e. unitary change

of the basis for V L′′

LL′) do not admit smooth deformations, implying that fusion categories are ‘rigid’

structures [43]. Below, we often use the so-called tetrahedral symbols, defined by[
L1 L2 L3

L4 L5 L6

]
=

1√
dL3dL6

[
FL1L2L4
L5

]
L3L6

. (8)

2.2 Symmetric gapped phases and module categories

To understand the interplay between solitons (kinks) and generalized symmetries, we need to

examine the symmetry action on gapped vacua within the framework of C-symmetric TFT (see

e.g. [19] for in-depth discussions and [20]). This mathematical background, reviewed below, enables

us to generalize the findings of [1] to situations where non-invertible symmetries are partially

broken in the IR. Such scenarios occur, for example, in the RG flows starting from D-series minimal

models, including a specific case of Z + Z∗ deformation of the 3-state Potts CFT, discussed in

Section 3.

The input data, apart from the symmetry category C, is a set of boundary conditions |a⟩⟩, which
are in one-to-one correspondence with the Hilbert space of the theory on a circle HS1

. The action

of the topological lines L of C on these boundary conditions (b.c.) is encoded in a set of consistent

topological junctions between boundaries and lines (see Figure 1), which endow them with the

5In the present discussion we disregard the possibility of a non-trivial Frobenius-Shur indicator ϵ = −1, which

is possible for self-dual lines. Some physical implications of this quantity are discussed e.g. in [6, 39–41].
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a b

L

µ
a c

b

L L′

=
∑
L′′

φa b cLL′ L′′

a c
L′′

L L′

Figure 1: Topological junction defining a module category M over C (Left). Boundary F -symbols

implementing fusion of topological lines on the boundary (Right).

mathematical structure of a module category M over C [14].6 These junction spaces are also vector

spaces and we will denote their dimension by (nL)
b
a. As before we will suppress the index for these

junctions since (nL)
b
a = 0, 1 in all our examples. Multiplication over these indices is denoted by

· in the formulas below. The fusion product of bulk lines attached to a boundary is given by a

boundary F -symbol7 φa b cLL′ L′′ . (Figure 1), which is subject to the boundary pentagon equation8

∑
Lu

[
FLL′L′′

Lv

]
LuL′

u

φabcLL′Lu
· φacdLuL′′Lv

= φabdLL′
uLv

· φbcdL′L′′L′
u
, (10)

that comes from the consistency of the following set of moves

φ
⇐

φ⇒

φ ⇐
φ⇒

F⇒ (11)

In addition, compatibility between the dimensions of the vector spaces on the two sides of the

right figure of Figure 1 implies the relation∑
b

(nL)
b
a(nL′)cb =

∑
L′′

NL′′

LL′(nL′′)ca . (12)

Different solutions (nL)
b
a to these equations are known as NIM (non-negative integer matrix)

representations of the module category. The analogue of the bulk quantum dimension is given

by the relative Euler terms ga of the boundary conditions. These can be defined as the partition

6See e.g. [44–48] for earlier studies of this type of representation.
7Our convention in labelling the indices differs from other works, e.g. φabc

LL′L′′ = (F̃ c
L′La)

−1
L′′b in [21]. In the

regular representation φ becomes the regular F-symbol φabc
LL′L′′ = F aLL′

c bL′′ .
8Notice that the boundary F -symbols φabc

LL′L′′ suffer from a large amount of redundancy stemming from a choice

of basis of the bulk-boundary junction space. Denoting a unitary change of basis of boundary junctions by uL
ab and

for bulk junctions by UL′′

LL′ we have that

φabc
LL′L′′ ≃ φabc

LL′L′′ uL
abu

L′

bc (u
†)L

′′

ac (U
†)L

′′

LL′ . (9)
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Ha,b ≃

a b

L

a

c

b

d

L

; =
√
dL [L]cdab ·

c d

Figure 2: The kink Hilbert space as an interval Hilbert space (Left). Symmetry action on Hab by

pushing down the L line. The dots denote the topological junctions of the module category M of

vacua.

function of the TFT on the disk with b.c. |a⟩⟩:

ga = a (13)

Their overall scale is unphysical due to the finite Euler counterterm on the disk, but their ratios

ga/gb are physical observables.

2.3 Symmetry action on the kink Hilbert space

Having reviewed the symmetry actions on gapped vacua, we now discuss the symmetry actions

on kinks that interpolate between different vacua.

Review of [21]. We start by briefly reviewing [21]. Following them, we will describe a state in

the kink Hilbert space |ψa,b⟩ ∈ Hab as the L→ ∞ limit9 of the strip Hilbert space with boundary

conditions a, b at the two ends. These should be identified with vacua of the IR gapped phase, see

Figure 2. An excitation in this Hilbert space describes a solitonic field configuration interpolating

between the vacua a at x→ −∞ and b at x→ +∞ — that is— a massive kink Kab of the theory.

We therefore identify the strip Hilbert space with the Hilbert space of kinks. For a special case of

a = b, the excitations do not change the vacuum, and they are often called breathers Ba.

A topological line L stretching between the left and right boundaries defines a map [L]cdab :

Hab → Hcd by being pushed downwards, as shown in Figure 2. Choosing the bases |ψab⟩ ∈ Hab

and |ψcs⟩ ∈ Hcd, this reads

L|ψab⟩ =
∑
ψcd

√
dL [L]cdab |ψcd⟩ . (14)

Here we introduced the factor of
√
dL for later convenience. The composition of L and L′ actions

9More precisely the dimensionless parameter ML ≫ 1, where M is the mass of the lightest kink.
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can be evaluated by applying the definition twice or by using the boundary F -symbols:

a

e

b

f

c d

L′

L

∑
L′′

φaceLL′L′′φ
cdf
LL′L′′

a

e

b

f

L′′ L
′

L
c

e

d

f

L′√
dL [L]cdab ·

e f

√
dLdL′ [L′]efcd [L]

cd
ab ·

a

e

b

f

L′′∑
L′′

φaceLL′L′′φ
cdf
LL′L′′

√
dLdL′

dL′′

⇒ ⇒

⇒ ⇒
(15)

The consistency between the two leads to the identity,

[L′]
ef
cd · [L]

cd
ab =

∑
L′′

φaceLL′L′′φ
cdf
LL′L′′ [L′′]

ef
ab . (16)

Kinks Kv
a,b and breathers Bv

a form irreducible representations (irreps) v of this algebra. Im-

portantly, a multiplet can contain both kinks Kv
a,b and breathers Bv

a , leading to degeneracy in

mass [21].

Relation to dual category. We now build on [21] and give a simple characterization of such

irreps using a relation to the dual category. The key idea is to interpret a module category M
as an interface between a QFT with symmetry C and a QFT with a dual category symmetry C∗

M ,

obtained from C by generalized orbifolding.10 Mathematically, the interface provides a category

of bimodules over C∗
M -C. In practice, it introduces “dual” boundary F -symbols (φ∗)abcvv′v′′ and an

isomorphism [L; v] allowing us to commute junctions on the two sides:

b

c

a
L

v

=
∑
d

[L; v]cdab

b

c

d
L

v

(17)

Similarly to how the pentagon equation is derived, one can show that [L; v] satisfies (16), which
suggests a relationship between a dual category and a representation of the algebra (16). The

10To be precise, generalized orbifolding corresponds to gauging a symmetric separable Frobenius algebra object

A of C [18, 49]. The dual symmetry C∗
M is identified with the category of A-A bimodules ACA. We will not need

details of this construction for the purpose of this paper. However see [50] for a physics motivated discussion about

the relation between gauging and module categories and [51] for a recent rephrasing of the gauging prescription.
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connection can be made more explicit by computing the action of L using the following diagram,

c d
a b

L

v

=

√
dL gb
gd

[L; v]cdab c d

v

(18)

where the extra
√

dLgb
gd

factor comes from the expectation value of a half loop of L anchored on

the interface:

b c

L

a
=

√
dL ga
gb

δbc b b

(19)

This follows from a particular choice of normalization for junction vector spaces, explained in

Appendix C.

By performing a radial quantization around a junction of v, we can interpret this as the action

of L on the strip Hilbert space, i.e. the action on kinks11:

L ·Ka,b =
∑
Kcd

√
dL gb
gd

[L; v]cdabKc,d . (20)

Comparing this with (14), we find that
√
gb/gd[L; v] and [L] can be identified. In addition, it is

straightforward to check the extra factor
√
gb/gd does not affect the relation (16), and therefore√

gb/gd[L; v] provides a representation of the algebra (16). In particular, the representation is

irreducible if the line v is a simple line of C∗
M .

This establishes that simple lines in the dual category C∗
M correspond to irreps of the algebra

(16). In fact, the converse is also true [52]: irreps of (16) are in one-to-one correspondence with

simple lines in C∗
M. Based on this correspondence, we will represent the restriction of the kink

Hilbert space Hab to a given representation v by a path integral with a dual v line insertion at the

bottom12:

Hv
a,b ≃

a b

v

Kv
a,b

(21)

A SymTFT description of this picture will be given in Section 2.5.

11Note that
√
dLgb/gd[L; v] cannot be directly identified with a matrix element of L in Ha,b since kink states Ka,b

are not properly normalized here. See [1] for related discussions for the regular representation. The normalization

of kink states will be taken into account when we derive the Ward identity in Section 2.5.
12Here we are talking about the full QFT, not just IR TQFT. Thus the bottom junction should not be thought

of as topological.
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The relation (16) is one of the consistency conditions for the bimodule category. In addition,

compatibility with the fusion structure of v lines

v × v′ =
∑
v′′

N∗v′′
vv′ v

′′ , (22)

leads to other consistency conditions like

[L; v × v′]
cd
ab =

∑
v′′

N∗v′′
vv′ [L; v′′]

cd
ab ,∑

f

(φ∗)dfev′v′′v [L; v′]dfab [L; v
′′]
ef
cb

√
gbge
gfgc

= (φ∗)abcv′v′′v [L; v]deac .
(23)

Selection rules. The structure we have explained gives strong constraints on the spectrum of

bound states, as the dual category C∗
M is also endowed with its own fusion ring structure (22).

For example, we may wonder if, given a multiplet of kinks Kv
a,b, the breathers in this multiplet

can be realized as bound states of kinks:

Bv
a ∼ Kv

a,bK
v
b,a . (24)

A necessary condition for this to happen is N∗v
vv ̸= 0. If N∗v

vv = 0 instead, the cubic coupling be-

tween two kinks and the breather must vanish. We will encounter an example of this phenomenon

related to the deformation of 3-state Potts CFT in the study of Fibonacci-symmetric S-matrices

in Section 3.

Remarks.

• While our formulas are simple and general, computing the data φ, φ∗ and [L; v] for a given

(C, M ), can be challenging. For small categories C, this can be done semi-analytically,

but systematic implementation, such as in computer-algebra programs, is hindered by large

gauge redundancy, making it difficult to identify physically distinct solutions. Compre-

hensive results exist in the literature for specific symmetries like discrete groups [53] and

Tambara-Yamagami categories (generalizations of Ising symmetry) [54]. However, for other

categories, such as the Haagerup category H3 mentioned in the introduction, the full struc-

ture is still undetermined [55]. Another useful tool for computing the boundary F -symbols

φ and φ∗ is the internal-Hom construction of Ostrik [52], which relates the boundary F -

symbols to the data of the generalized gauging A connecting C with C∗
M . See also Appendix

A of [50] for explicit expressions.

• The structures discussed above do not directly determine to which symmetry multiplet Kv

excitations of a given theory belong. This information needs to be manually input in the

bootstrap analysis. Typically, it can be inferred by studying allowed field configurations be-

tween vacua, which encode the dual representation coefficients (nv)
b
a. However, this method

can be inadequate especially if some symmetry remains unbroken in the IR (i.e. if M ̸= Reg,

the regular module category).13 An alternative approach that works in some cases is to iden-

tify the kink creation operator in the UV theory, which lives in the twisted Hilbert space

13In many such cases the model is related to one in which the SSB is maximal by a generalized orbifold. One

can then study the spectrum of kinks in the orbifolded theory and map it back to the original system.
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of the v line [1]. However, to the best of our knowledge, there is no universally applicable

procedure to extract this information.

2.4 Examples

Regular representation. The simplest example is the regular module category M = Reg,

which describes the complete spontaneous breaking of the non-invertible symmetry. In this case

the boundary conditions are isomorphic to the space of lines, and there exists an “identity” b.c.

|1⟩⟩ such that:

|L⟩⟩ = L|1⟩⟩ . (25)

The NIM coefficients are identified with the fusion coefficients of C: nL′′

LL′ = NL′′

LL′ and the boundary

F -symbols are just bulk F -symbols. The regular module implements a trivial interface, which

means C∗
M = C and therefore from (17) we see that [L; v] is simply the bulk F -symbol:

[L; v]cdab = FLcv
b ad =

√
dadd

[
L c a

v b d

]
. (26)

The regular representation appears in the study of e.g. the deformation of the unitary minimal

models Mn by the relevant ϕ1,3 operator. The theory, with the negative sign of the deforming

operator, is known to flow to a set of n − 1 gapped vacua which form the regular representation

of the An category. The interested reader can find more detailed material about these flows and

the preserved symmetry in Appendix A.

Fib and Fib× Z2. As a second example we consider theories with Fibonacci symmetry:

1, W, W 2 = 1 +W , (27)

and its Z2 extension Fib× Z2:

1, W, η, W ′ = ηW . (28)

The Fibonacci symmetry admits a single module category (the regular one) with two vacua. Kinks

between these vacua belong to the W multiplet [21]:

KW
1,W , K

W
W,1, B

W
W , (29)

and the breather BW
W can be interpreted as a bound state of two kinks KW

W,1 × KW
1,W . A more

interesting situation appears if one studies RG flows from D-series minimal models. The first non-

trivial example is a gapped RG flow from the Potts model triggered by the Z+Z∗ deformation [6].

This has been studied in the integrability literature by using the parafermion description [56]. Also,

it is the Z2-orbifolded version of the A5-preserving flow M5,4 + ϕ1,3.
14 The symmetry preserved

in the Potts description is Fib× Z2 and the theory flows to two gapped vacua 1, W . This is not

the Regular TFT for the total symmetry, as the Z2 is unbroken. The kink multiplets are labelled

by lines in the A5 category:

1, W̃ , η̃, W̃ ′ , (30)

14To be precise, Fib × Z2 describes the fusion ring of the symmetry category. There are various choices of

F -symbols given this Fusion ring, we will denote them by A5 and A5/Z2. The symmetry category of Potts is

A5/Z2.
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X = L Xrel

L
=

L

ℓ

Figure 3: The SymTFT sandwich construction of a theory X (Left) and its representation of

symmetries and charged operators (Right).

and the kink is identified with the W̃ ′ line, corresponding to the first node of the A5 Dynkin

diagram. The kink multiplet is now:

KW̃ ′

1,W , K
W̃ ′

W, 1, B
W̃ ′

W . (31)

However the fusion rule

W̃ ′ × W̃ ′ = 1 + W̃ . (32)

now implies that the breather BW̃ ′
W is not a kink-antikink bound state (although, being part of

the same multiplet, they are still degenerate in mass). We will see later that this has nontrivial

consequence on the structure of the S-matrix for this flow.

2.5 SymTFT description of kink scattering

We now explore kink scattering using the SymTFT framework for boundary conditions, developed

in recent works [33,34] (see also [38] and [57]).

The primary advantage of this approach is its ability to decouple the dynamics of the theory from

the structure of symmetries, disentangling in our case the symmetry action from the dynamical

data of a scattering process. This perspective allows us to discuss various symmetry aspects, such

as representations and ’t Hooft anomalies, independently of the specific QFT involved. Though

the formalism is relatively new [58]15, it has already been applied to a range of areas, including the

analysis of representations [60, 61] and ’t Hooft anomalies [62, 63] for non-invertible symmetries

in higher dimensions, as well as the description of symmetric gapped phases and their transitions

in (1+1) dimensions [20, 57, 64, 65]. In theories with a holographic dual, the SymTFT can be

derived by reduction over the compact dimensions, as pioneered in [66]. See also e.g. [67–69].

While primarily applied to discrete symmetries, extensions to continuous symmetries have been

discussed recently [70–74].

Below we will not provide a comprehensive review of the SymTFT formalism. The interested

reader can refer to [58,66] for a more complete exposition.16 More detailed analysis of the interplay

between SymTFT and boundary conditions will be presented elsewhere [34].

2.5.1 SymTFT and boundaries

Basics of SymTFT. Let us briefly introduce the basic concepts. The SymTFT framework

separates the dynamical QFT data from the rigid symmetry action by introducing a (d + 1)-

dimensional bulk. This approach is particularly powerful and explicit in (1+1) dimensions, while

15Early examples however date back to e.g. [49, 59].
16Also, the interested reader can consult some of the recent papers on the subject, e.g. [62, 63,65,69–71,74–82].
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it is less explored in higher dimensions [62,63]. Below we focus on (1+1) dimensions. We associate

to a QFT X with symmetry category C a triplet

(Z(C), L , Xrel) , (33)

where Z(C) is a 3d TQFT whose spectrum of lines forms the Drinfeld center of C [14], L is a

topological (gapped) boundary condition for Z(C) and Xrel is a free boundary condition coupling

the bulk to the dynamical d.o.f. of X. The topological boundary condition is technically described

by a Lagrangian algebra object L in Z(C).17 This setup provides a “sandwich” realization of the

theory X, as illustrated in Figure 3. The symmetry C is realized by topological line operators

confined to the gapped boundary condition L , while local charged operators (representations of

the symmetry) are implemented by lines ℓ ∈ L terminating on the gapped surface. The symmetry

action then follows from the bulk braiding (see Figure 3).

The “decoupling” between symmetries and dynamical data can be achieved by inserting a reso-

lution of identity of 3d TQFT at an intermediate location along the interval; the procedure known

as bulk surgery. Specifically, for a bulk geometry Σ× I, we select a basis |ψ⟩ of the Z(C) Hilbert
space HΣ on Σ (possibly with punctures corresponding to insertions of lines along I) and insert a

resolution of identity in their path integral:

=
∑
ψ

|ψ⟩ ⟨ψ|
(34)

This separates the initial geometry into two pieces with the left piece encoding all the information

on the C-symmetry, while the right piece carries the dynamical information.

Boundaries and kink multiplet. The framework above can be extended to include boundaries

[33,34,38,57]. A boundary condition corresponding to an irreducible object a ∈ M (where M is

a module category over C) for the QFT X is represented by a second topological boundary LM

associated with the dual symmetry C∗
M , which interpolates between Xrel and L , together with

the choice of a distinct junction a between L and LM . See Figure 4.

a

X
=

L

a LM

Xrel

∂Xrel

a

b

Kv
ab =

a

b

v

∂Xrel

Figure 4: SymTFT representation of a boundary condition forX (Left) and its boundary operators

(Right).

Symmetry lines L on the left boundary L can terminate topologically on the interfaces a, b, c...

endowing them with the structure of a module category over C. On the other hand, lines v ∈ C∗
M

17A Lagrangian algebra is a line algebra L =
∑

λ Zλ λ which is associative, commutative and whose dimension

is maximal d2L =
∑

λ d
2
λ. For a precise description see [83–87].
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along LM describe a boundary-changing operator, whose multiplet is labelled by v. This is exactly

the kink multiplet Kv
ab we have previously described. The symmetry C acts on it by half-braiding

on the topological boundary L [33, 34,38]:

v
L

a

b

c

d

L LM

=

√
dL gb
gd

[L; v]cdab v

c

d

L LM

(35)

To make contact with our previous description of the symmetry action on the interval Hilbert space

Hab, we consider a bulk geometry with two topological boundaries LM encasing L on both ends.

This describes the Hilbert space Ha,b for the theory X. As discussed in the previous subsection,

states in this Hilbert space are in irreps of the relevant symmetry algebra (16), specified by a line

v ∈ C∗
M. In the SymTFT description, this corresponds to considering the following configuration,

where the v line stretches along LM connecting L and Xrel while the symmetry lines L sit on

the left topological boundary L :

d
c

L
b

a v

(36)

In what follows, we will use this description to study implications of categorical symmetries on

the scattering of kinks.

2.5.2 S-matrix of kinks and modified crossing

We will now generalize the results of [1] using the SymTFT framework.

To define the S-matrix of kinks, we follow [1] and consider a correlation function on a (Euclidean)

disk with insertions of boundary-changing operators that create kinks. This correlation function

describes the scattering process, after the analytic continuation to Lorentzian kinematics and

performing appropriate Fourier transformations on Cauchy slices (see e.g. [88, Ch. 5] for details).

As a result, we obtain a schematic relation

Sabdc(s) ∝ S b

a

d

c

. (37)

Here the right hand side represents the analytically-continued disk correlation function, a-d label

the vacua, s is the Mandelstam variable. In the SymTFT framework discussed above, the right
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hand side of (37) admits the following three-dimensional description:

Sabdc(s) ∝ S b

a

d

c

= S

a

c

bd . (38)

As pointed out in our previous work [1], to ensure unitarity of the S-matrix, we also need to

take into account corrections to the norms of in- and out-states due to the TQFT dynamics in

the IR. To compute such corrections, let us first consider the path-integral representations of in-

and out-states18:

|In⟩ =
d b

cv v

, ⟨Out| =

d b

av v

. (39)

In principle, the norms ⟨In|In⟩ and ⟨Out|Out⟩ can be computed by gluing (39) to their upside-

down images and performing the path integral. This however does not separate the IR TQFT

from theory-specific dynamics, making the analysis challenging.

To make progress, we use the SymTFT description. We propose that the norm of in-states can

be computed by the following SymTFT configuration (a similar expression holds for out-states):

⟨In|In⟩ =

c

c

bd . (40)

Here we performed the bulk surgery and projected to a specific state depicted above, which is

described by two v lines going upward without any junctions in between. This is to ensure that

the state at t = 0 slice is a two-kink state; without it, the path integral would include all possible

field configurations including multi-particle states.

The key advantage of (40) is that it cleanly separates the TQFT dynamics from everything else:

the right half of the figure gives the standard QFT norm of in-states containing the momentum-

conserving delta function19 while the left half describes the correction to the norm due to the

IR TQFT, which depends purely on the fusion category data. Evaluating the left half in the IR

TQFT, we obtain

⟨In|In⟩
∣∣
TQFT

=

c

c

bd =

c

c

bd = dv
√
gbgd , (41)

18Here the analytic continuation to Lorentzian kinematics are made implicit on the right hand sides.
19Written explicitly, it reads ⟨p′1, p′2|p1, p2⟩ = (2π)2 2

√
s
√
s− 4m2 δ2(p1 + p2 − p′1 − p′2) .
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where we have used basic identities for (1+1)d symmetric TFTs, (13) and (19), to evaluate the

diagram.

We thus conclude that the S-matrix between properly normalized in- and out-states is given by

Sabdc(s) =

S b

a

d

c√√√√√√√√
a

a

bd

c

c

bd

. (42)

As in our previous work, the numerator is expected to be crossing symmetric while the denominator

depends on the channels (s-, t-channels) we consider, leading to the modified crossing rule,

Sabdc(s) =

√√√√√√√√√√√√√√√√√√
c

a

bb

c

a

dd

a

a

bd

c

c

bd

Sbcad(t) =

√
gagc
gbgd

Sbcad(t) . (43)

This provides a generalization of the modified crossing rule in [1], applicable to vacua transforming

in general representations of C.

2.5.3 Ward identities and projector basis

Ward identities for S-matrix. Another benefit of SymTFT is that it provides a conceptually

clean derivation of the Ward identities obeyed by the S-matrix.

SymTFT geometrically separates the symmetry actions from the QFT dynamics, and allows

us to derive the Ward identities purely from the topological boundary L of SymTFT, where

symmetry lines live. Concretely, we consider a symmetry line L extending between the in- and

out-states and deforming it past the v lines using [L; v] matrices. Focusing on the (left) topological

boundary L , this gives the following identity for the disk correlation functions

L b

b′

a

d′

d

c′

=

de
fo
rm

do
w
n =deform

up

∑
e

[L; v]ded′c′ [L; v]
be
b′c′

√
dL gc′

ge
b

a

d

e

∑
e′

[L; v]d
′e′

da [L; v]b
′e′

ba

√
dL ga
ge′

b′

e′

d′

c′

(44)
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Reinstating the normalization factors needed to define the S-matrix, this leads to the Ward identity

for the S-matrix,∑
e

[L; v]ded′c′ [L; v]
be
b′c′

√
gc′gbgd
ge

Sabde(s) =
∑
e′

[L; v]d
′e′

da [L; v]b
′e′

ba

√
gagb′gd′

ge′
Se

′b′

d′c′(s) . (45)

For the regular representations, this reduces to the Ward identity used in our previous work [1].

Projector basis. In [1], we showed that 2 → 2 S-matrix of kinks can be decomposed into

representations of the fusion category by using projectors Pχ:

Sabdc(s) =
∑
χ∈v×v

(Pχ)
ab
dc Aχ(s) , (46)

where, for the regular representation, Pχ takes the explicit form [16]:

(Pχ)
ab
dc =

√
dχ

d2
v

√
db dd

vv

vv
χ

c

a

bd =
√

dadc dχ

[
v v χ

d b a

] [
v v χ

d b c

]
, (47)

This decomposition ensures that the S-matrix satisfies the Ward identities.

We now generalize this result to general module categories by applying the idea of separating

the symmetry action of C from the dynamical data using SymTFT and bulk surgery. This can be

achieved simply by inserting a resolution of identity in the SymTFT description of the S-matrix,

leading to the following schematic picture: (Here various normalization factors are made implicit

for simplicity.)

S b

a

d

c

=
∑
χ

a

c

bd χ χ S . (48)

More precisely, we inserted the following orthogonal states of the bulk TQFT20

|χ⟩ =
√
dχ

dv
χ . (49)

The SymTFT picture (48) provides a geometric realization of the S-matrix decomposition (46):

the left half corresponds to the projector Pχ, which enforces the Ward identities, while the right half

20The prefactor
√
dχ/dv was chosen to match the conventions of the projector basis. It does not affect the Ward

identities.
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represents the partial wave amplitude Aχ, capturing the dynamical information. Taking into ac-

count the normalizations of in- and out-states discussed above, ⟨In|In⟩
∣∣
TQFT

= ⟨Out|Out⟩
∣∣
TQFT

=

dv
√
gbgd, the projector basis can be computed explicitly as follows:

(Pχ)
ab
dc =

√
dχ

d2
v

√
gbgd

a

c

bd χ =

√
dχ

d2
v

√
gbgd

χ

c

a

bd = (φ∗)dcbvvχ (φ
∗)badvvχ . (50)

Here we reduced the 3d picture to 2d TQFT in the second equality, and evaluated the diagram

using the dual boundary F -symbols and the results from [19] in the third equality. When applied

to the regular representation, this correctly reproduces (47).

It is straightforward to show, following the arguments in [1, 16], that the projector defined this

way satisfies the Ward identities. Pictorially, they correspond to the following manipulation,

L

a

c′

b′d′
bd χ

=

de
fo
rm

do
w
n =deform

up

∑
e′

[L; v]d
′e′

da [L; v]b
′e′

ba L

a

c′

e′e′

b′d′
χ

∑
e

[L; v]ded′c′ [L; v]
be
b′c′ L

a

c′
ee

bd χ

(51)

The equality between the two figures can be explicitly verified using the pentagon-like identity

i.e. the second formula in (23).

In Section 3, we will use these projectors to implement the S-matrix bootstrap with the fusion

category symmetry. 21

3 S-matrix bootstrap with fusion category symmetry

The S-matrix bootstrap program aims at mapping out the space of possible scattering amplitudes

imposing constraints coming from general principles such as Lorentz invariance, unitarity and

21The projectors and the Ward identities have other applications. For instance, they are needed to ensure that

integrability survives even in the twisted sectors of categorical defects in integrable QFTs: more precisely, given a

symmetry line L, one can construct mutually commuting transfer matrices TL(u) on the L-twisted Hilbert space

if and only if the symmetry Ward identities are satisfied. We hope to report on this soon [28].
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(a) (b)

Figure 5: (a) Two-body scattering of particles with the same mass m giving the amplitude S(s).

(b) Analytic structure of the amplitude in the complex s plane. Singularities of the amplitude

S(s) lie on the real axis, including two-particle branch cuts starting at s = 0, 4m2. Possible bound

states appear as poles in 0 < s < 4m2, here we show in blue one bound state of mass mb and its

crossing symmetric image (lighter blue).

causality. Many different classes of theories have been studied with this approach, for a review

see [89]. Although it is well-understood how to include the existence of global group symmetries

in terms of irreducible representations and projectors, theories with generalized symmetries have

been a completely uncharted territory for the S-matrix bootstrap. Here we start the systematic

exploration of the S-matrix in such theories and study the space of scattering amplitudes for

(1+1)d gapped theories with categorical symmetries.

As we saw in the previous section, the presence of categorical symmetries highly constrains the

spectrum of the theory and –as we put forward in [1]– has important implications for scattering

amplitudes, giving modified crossing rules.

In the following we review the consistency conditions we should impose on the amplitudes. First,

we impose the global symmetry given by the fusion category C by projecting the amplitude into

the different fusion channels. We then review what unitarity, (modified) crossing and analyticity

imply for the amplitudes in different channels.

3.1 Review of S-matrix bootstrap in (1+1)d

In this section we review how to bootstrap amplitudes in (1+1)d. The reader familiar with S-

matrix bootstrap can safely skip this section and proceed to the next one.

We consider the two-body scattering of the lightest particle of mass m in a gapped QFT, as

shown in Figure 5a. Because of Lorentz invariance, this scattering amplitude should be a function

of the three Mandelstam invariants s = (p1 + p2)
2, t = (p1 − p3)

2 and u = (p1 − p4)
2 satisfying

the usual relation s + t + u = 4m2. However, in 1+1d momentum conservation implies that

{p1, p2} = {p3, p4} so that we can set u = 0 and hence we have a single independent kinematic

variable which we choose to be the center of mass energy squared, s. This 2 → 2 amplitude S(s)

is highly constrained by the basic principles of analyticity, crossing and unitarity which we briefly

explain below.
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Analyticity emerges form causality and states that the physical amplitude is the boundary

value of a complex function S(s) in the complex plane s ∈ C. Moreover, this function is analytic

except for possible singularities associated to on-shell processes like poles for bound states and

branch cuts for multiparticle thresholds.22 An example of the analytic structure for S(s) in a

theory with one bound state is given in Figure 5b.

Crossing symmetry relates different scattering processes in which we exchange in and out

particles, stemming from the interpretation of a particle as an antiparticle moving backward in

time. In terms of the analytic function S(s), it tells us that different kinematic channels are

boundary values of the same analytic function. For instance, the s-channel 2 → 2 amplitude with

s ≥ 4m2 is related by analytic continuation to the t-channel one where t = 4m2− s ≥ 4m2.23 The

explicit relation is then S(s) = S(t = 4m2 − s).

Unitarity tells us that the full S-matrix S giving the map between in and out states |p1, . . . , pn⟩in =

S|p1, . . . , pn⟩out is a unitary operator, i.e. S†S = 1. This is indeed what is required from conser-

vation of probabilities in quantum mechanics. For the 2 → 2 amplitude out⟨p3, p4|p1, p2⟩in =

(2π)22
√
s
√
s− 4m2δ2(p1 + p2 − p3 − p4)S(s) unitarity implies that |S(s)|2 ≤ 1 for physical values

of the center of mass energy s ≥ 4m2. Using real analyticity S∗(s) = S(s∗) one can also write it

as S(s)S(s∗) ≤ 1.

Bootstrap Now that we know the conditions we want to impose, we can bound the space of

consistent amplitudes. This can be done by choosing a family of functionals24 of the S-matrix

F [S(s)] and maximizing them. In practice, we write down an ansatz for the amplitude which

trivializes analyticity and crossing and perform the maximization imposing unitarity separately

as pioneered in [3]. Since the analytic structure of the amplitude depends on the spectrum of the

theory, one needs to first fix the latter. For example, for theories without bound states one can

use Cauchy’s theorem to write the dispersion relation25

S(s) =
1

2πi

∮
ds′

S(s′)

s′ − s
= S∞ +

1

2πi

∫ ∞

4m2

ds′
[

1

s′ − s
+

1

s′ − 4m2 + s

]
D(s′) , (52)

where D(s) is the discontinuity across the branch cut D(s) ≡ DiscS(s), which using real analyt-

icity reduces to the imaginary part D(s) = 2i ImS(s). Most of the time the maximization has

to be done numerically, so that one writes a discretized ansatz for the amplitude and imposes

unitarity in a grid of physical values of the energy. One way of making a discretized ansatz is to

22Since we are considering scattering of the lightest particle we exclude anomalous thresholds which would give

extra singularities associated to Landau diagrams [90,91]. In contrast with higher dimensions, the latter singularities

are poles in (1+1)d.
23Crossing symmetry of 2 → 2 scattering of massive (local) particles has been proven in [92]. As explained in [93],

in more general cases crossing symmetry is highly non-trivial and relates scattering amplitudes to other type of

asymptotic observables.
24Typical choices for functionals are effective quartic coupling given by the amplitude itself S(s∗) for 0 < s∗ < 4m2

(where the amplitude is real), scattering lengths, and cubic couplings given by the residue at bound state poles.
25In case the amplitude does not fall off fast enough at infinity one can include subtractions.
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approximate D(s) in (52) by a piece-wise linear function,

D(s) =
(s− sj−1)Dj + (sj − s)Dj−1

sj − sj−1

(sj−1 ≤ s ≤ sj) . (53)

Using the dispersion relation (52), this provides an ansatz for the S-matrix, parametrized by

discrete data {Dj}. With this crossing symmetric, analytic ansatz, one can proceed to the opti-

mization of a functional subject to unitarity (imposed at discrete points s = sj). Explicit examples

for the numerical implementation can be found in appendix D. This is known as the primal ap-

proach, in which one explores the space of allowed amplitudes from the inside, by constructing

explicit amplitudes that satisfy all axioms. The bounds we find for F in this way are however not

rigorous and may vary as we increase the number of parameters in the ansatz.

A complimentary approach called dual allows us to establish rigorous bounds. This approach

was first proposed in [94] and then developed in various contexts in [24, 25, 95–100]. Here we

explain the key points and give details on the derivation and examples in appendix D. The idea

is to write a dual functional Fd satisfying the inequality F ≤ Fd, so that we are approaching the

optimal bound from above. The dual functional Fd is written in terms of dual variables K(s)

which act as Lagrange multipliers for the S-matrix constraints, so that the optimization problem

satisfies maxS F ≤ minK Fd. The dual functional takes the form

Fd =
2

π

∞∫
4m2

ds|K(s)| , (54)

where K(s) is analytic in the cut plane (except for possible poles if the primal functional is of the

form S(s∗)), decays fast enough at large s (at least like s−3/2) and obeys an anticrossing condition

K(4m2 − s) = −K(s).26 It is simple to implement the dual optimization numerically by writing

an ansatz for K(s) with the former properties and performing the integration by quadrature.

Global symmetry So far we have focused on the scattering of identical particles. If we consider

theories with a global symmetry where different particles are grouped into symmetry multiplets

some modifications are needed. The first modification is that there will be more analytic functions

(as many as irreducible representations the two external particles can form) related to each other

by crossing. Take for instance the two-body scattering of particles transforming in the vector

representation of O(N). We can write this amplitude in terms of the allowed scattering channels,

namely singlet, antisymmetric and symmetric representations

Sijlk(s) =
∑
χ

Aχ(s)(Pχ)
ij
lk , (55)

(Psing)
ij
lk =

1

N
δijδkl , (Panti)

ij
lk =

δikδjl − δilδkj
2

, (Psym)
ij
lk =

δikδjl + δilδkj
2

− 1

N
δijδkl (56)

where i, j, k, l = 1, . . . , N . In this projector basis, unitarity simply reads |Aχ(s)|2 ≤ 1 for each

representation. Crossing symmetry Sijlk(s) = Sjkli (4m
2− s) then gives non-trivial relations between

26In the case with global symmetry where we have amplitudes in different channels satisfying Sχ(4m
2 − s) =

Cχχ′Sχ′(s), the dual variables Ka(s) should obey anticrossing with the transpose of the crossing matrix Kχ(4m
2−

s) = −Cχ′χKχ′(s).
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the different channel amplitudes

Aχ(4m
2 − s) =

∑
χ′

Cχχ′Aχ′(s) , (57)

with Cχχ′ the crossing matrix which for O(N) reads

C =

 1
N

−N
2
+ 1

2
N
2
+ 1

2
− 1

N

− 1
N

1
2

1
2
+ 1

N
1
N

1
2

1
2
− 1

N

 . (58)

In the following we explain how these S-matrix properties translate into the setting where the

global symmetry is described by a fusion category.

3.2 Projector basis

As we have seen in Section 2, to study kink scattering in a massive (1+1)d QFT with categorical

symmetry C, we need few ingredients. First, we have the module category M over C, which
encodes the information about possible boundary conditions a-d we identify with the infrared

vacua and physically tell us the pattern of spontaneous breaking of the symmetry C. Then, we

have the kink Kv
a,b interpolating between vacua which acts as a boundary changing operator to

which we associate a simple line v in the dual category C∗
M . Finally, to ensure kink scattering

amplitudes are compatible with the symmetry C, we expand the amplitude in projectors Pχ which

solve the corresponding Ward identities:

Sabdc(s) =
∑
χ

Aχ(s) (Pχ)
ab
dc , (59)

where χ ∈ C∗
M specifies the fusion channel v × v ⊃ χ and Aχ(s) are the partial amplitude

containing the dynamical information. The projectors can be explicitly written in terms of the

boundary F -symbols for the dual category φ∗ as follows

(Pχ)
ab
dc =

√
dχ

d2
v

√
gbgd

χ
vv

vv

c

a

bd = (φ∗)badvvχ (φ
∗)dcbvvχ =

√
dadc dχ

[
v v χ

d b a

]
∗

[
v v χ

d b c

]
∗
, (60)

where in the last equation we used

[
v1 v2 v3
v4 v5 v6

]
∗
to denote the tetrahedral symbols of the dual

category C∗
M . If we consider the case in which all symmetries are spontaneously broken, we have

the regular module category for which C∗
M = C and we recover our previous result [1]

(Pχ)
ab
dc =

√
dχ

d2
v

√
dbdd

vv

vv
χ

c

a

bd =
√
dadc dχ

[
v v χ

d b a

] [
v v χ

d b c

]
. (61)

Let us now see how unitarity and (modified) crossing are implemented in this basis:
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Unitarity As explained in the previous section, unitarity of the full S-matrix S†S = 1 implies

the following inequality for the two-body scattering∑
e

Sebdc(s)S
ab
de(s

∗) ≤ δac , (62)

which in the projector basis (59) is simply:

Aχ(s)Aχ(s
∗) ≤ 1 (s ≥ 4m2) . (63)

(Modified) crossing As shown in our previous work [1] for the regular representation and in

Section 2.5.2 for the generic case, the modified crossing equations for the S-matrix read27

Sabdc(s) =

√
gagc
gbgd

Sbcad(4m
2 − s) , (64)

where ga is the relative Euler term defined in (13), which coincides with the quantum dimension

da in the case of the regular representation. For the partial amplitudes Aχ(s) it amounts to the

relation

Aχ(s) =
∑
χ′

dχ′

[
v v χ

v v χ′

]
∗
Aχ′(4m2 − s) . (65)

which can be obtained by comparing projectors in the s− and t− channel. This gives us the

analogue of the crossing matrix Cχχ′ in (57) in terms of the module category data.

Analyticity The last main ingredient is analyticity: We assume the amplitudes Aχ(s) are an-

alytic except for possible singularities related to stable particles (such as poles for bound states)

and physical thresholds (branch cuts from multiparticle intermediate states). This means that

each Aχ(s) is analytic in the physical sheet where we evaluate unitarity (see Figure 5b) except for

possible bound state poles between 0 and 4m2.28

Bootstrap The bootstrap problem is the following: given a category, what is the space of pos-

sible fusion channel amplitudes Aχ(θ) compatible with analyticity, unitarity (63) and (modified)

crossing (65)?

We will explore the space of possible amplitudes by maximizing functionals of the form F =∑
χ nχAχ(s∗), where we evaluate the partial amplitudes at a fixed energy s∗ and repeat the maxi-

mization for many coefficients nχ.
29 In the following we bound the space of amplitudes for theories

with An and Fibonacci categories. Since these spaces include integrable amplitudes, we first state

the conditions integrable amplitudes with these categories should satisfy.

27In [1] we used the rapidity θ related to s as s = 4m2 cosh2(θ/2), in this variable crossing maps θ to iπ − θ.
28In the examples discussed here the external particles are also the lightest ones, so that there are no Landau

singularities.
29This is the normal type of functionals considered in [94], which highlight the points at the boundary with more

curvature. We also use the dual approach for the radial type where we fix a direction Aχ(s∗) = t nχ and maximize

t.
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Yang-Baxter equations If the theory is integrable, the 2 → 2 amplitude obeys the Yang-

Baxter equation, imposing the factorization of three-body scattering in different orders. Expanding

the amplitudes in terms of projectors gives the following equation

∑
ηi

Aη1(θ2)Aη2(θ1 + θ2)Aη3(θ1) =
∑
χi

Aχ1(θ1)Aχ2(θ1 + θ2)Aχ3(θ2)

(66)

Through a series of F-moves, one can bring both sides of the equation to the following network of

lines

and get the condition the partial amplitudes Aχ(θ) should satisfy in case the theory is integrable:

∑
η2

dη2

[
v v η2
ξ2 v η1

]
∗

[
v v η2
ξ2 v η3

]
∗
Aη1(θ2)Aη2(θ1 + θ2)Aη3(θ1) =

∑
χ1,χ2,χ3

dχ1dχ2dχ3

[
v v χ2

ξ2 v χ1

]
∗

[
v v χ2

ξ2 v χ3

]
∗

[
v v χ1

ξ2 v η1

]
∗

[
v v χ3

ξ2 v η3

]
∗
Aχ1(θ1)Aχ2(θ1 + θ2)Aχ3(θ2) .

(67)

As we shall see, integrable amplitudes appear at special points of the allowed space of amplitudes.

3.3 An category

One of the simplest categories to consider isAn, with n−1 symmetry lines labeled by a = 0, 1/2, . . ..

We study the case in which we have n−1 vacua, corresponding to the regular representation of the

module category discussed around (26). This is the category present in the ϕ1,3 deformations of

minimal models, described by integrable amplitudes that make their appearance at special features

of our bounds. We focus on the scattering of kinks Kab interpolating between neighbouring vacua.

Since they form a symmetry multiplet they all have the same mass m [21].

The symmetry line associated to such kinks is v = 1/2, which results in two possible fusion

channels χ = 0, 1. The modified crossing rules (65) for the partial amplitudes Aχ(s) then read(
A0(s)

A1(s)

)
=

1

d1/2

(
1 d1

1 −1

)(
A0(4m

2 − s)

A1(4m
2 − s)

)
, da =

sin π(2a+ 1)/n

sin π/n
. (68)

In the equation above we have evaluated the fact that in the regular representation the dual

boundary F -symbols are the same as the bulk ones. Their explicit expressions can be found in

appendix A of [1].

It is straightforward to bootstrap the space of amplitudes consistent with analyticity, unitarity

and the modified crossing equations above. To fix the analytic properties, we consider theories
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Figure 6: Space of allowed amplitudes Aχ(s) for An category, section at s∗ ≈ 3.41m2. Amplitudes

consistent with analyticity, unitarity and modified crossing lie inside these bounds. The lines

indicate the optimal bounds found with the dual/primal approaches explained in the main text,

different colors show the dependence on n. The points at the vertices are integrable solutions of

which the bottom left ones correspond to the Mn − λϕ1,3 RG flows.

where the kinks do not form bound states (in any fusion channel), so that the partial amplitudes

Aχ(s) are analytic in the cut plane. To explore the space of allowed amplitudes one can maximize

functionals of the form F =
∑

χ nχAχ(s∗) for many different nχ. The primal and corresponding

dual bootstrap approaches described in 3.1 result in the optimal bounds shown in Figure 6.30

The first feature is that the lower and upper bounds are related by an overall change of sign

Aχ(s) → −Aχ(s), since multiplying by an overall minus gives an equally consistent amplitude. A

more interesting feature is that for each n there are two clear vertices, which are actually the only

two integrable points at the boundary of the allowed space. They are again related by an overall

sign and are the Yang-Baxter solutions first proposed in [30, 101, 102] whose modified crossing

version we wrote in [1]. The solutions located on the lower vertices read

A0(θ) = Z(θ) sinh

(
iπ + θ

n

)
, A1(θ) = Z(θ) sinh

(
iπ − θ

n

)
, (69)

Z(θ) =
1

sinh θ−iπ
n

exp

 i

2

∞∫
−∞

dk

k
sin kθ

sinh kπ
2
(n− 1)

sinh nkπ
2

cosh kπ
2

 ,

where we used the rapidity variable θ satisfying s = 4m2 cosh2 θ
2
. Importantly, these amplitudes

describe known theories, namely the ϕ1,3 deformations of unitary minimal models Mn. The

physical models for their minus sign counterparts are not known. In a by now standard result

30Notice that the optimization procedure not only produces the bound but also gives the extremal amplitudes

saturating those bounds, so that we can study generic features of these amplitudes.

28



in S-matrix bootstrap, the rest of the boundary amplitudes are not integrable but saturate two-

particle unitarity.31 They exhibit a relatively simple analytic structure32 and crucially, an absence

of oscillatory behaviour in θ, in contrast with the results of other global group symmetries such

as Z2, Z4 and O(N) [94,103–105]. This is reminiscent of the fact that in the original proposal for

the Mn−ϕ1,3 amplitudes Sabdc(θ) there was an oscillating factor of the form
(

dadc
dbdd

) iθ
2π

which nicely

disappears when using the correct crossing rules.

Although the only known physical model we have made contact with are the ϕ1,3 deformations of

minimal models, let us stress that any QFT (integrable or not) with this An categorical symmetry

and spectrum should have a two-particle amplitude inside these bounds.

3.4 Fibonacci category

The next category we study is Fibonacci with two elements 1,W and non trivial fusion rule

W 2 = 1 + W . Considering again the regular representation of the module category leaves us

with two vacua a = 0, 1/2 which we identify with symmetry lines 1,W . The kink is associated

to the v = 1/2 = W line, which gives the following vacua configurations as part of the same

symmetry multiplet: K1/2,0, K0,1/2 and K1/2,1/2. These are precisely the kink, anti-kink and

breather discussed around (29). Given the fusion rule above, there are two partial amplitudes

obeying the modified crossing condition(
A0(s)

A1/2(s)

)
=

1

d1/2

(
1 d1/2

1 −1

)(
A0(4m

2 − s)

A1/2(4m
2 − s)

)
, d1/2 =

1 +
√
5

2
. (70)

Because of the fusion rule v × v ⊃ v, allows us to have a cubic coupling between the scattered

particles. Indeed, we can interpret the breather K1/2,1/2 as a bound state of the kink and anti-kink.

What this means for the amplitudes is that we can have a pole in the v = 1/2 fusion channel

A1/2(s) ∼ g2

s−m2 . The bound state mass is fixed to be the same as the external particles since the

states we are considering are all part of the same symmetry multiplet and therefore degenerate

in mass, while the residue given by the (square of the) non-perturbative cubic coupling is a free

parameter.33

A natural space to bootstrap is then {A0(s∗), A1/2(s∗), g
2}. We do so with the same primal and

dual methods as before, with the only difference that now the amplitudes have poles related to the

bound state.34 In practice, we fix the coupling to some value and use the normal functionals to

31In theories that are not integrable there should be particle production, but the optimization problem is blind

to this fact since we are not including multi-particle data. The bounds are however rigorous and the extremal

amplitudes are perfectly consistent at low energies.
32To be more precise, there is a single tower of poles and zeros in the imaginary rapidity axis, with the “fractal”

structure discussed in [94] and only pair of zeros (poles) at θ = iπ(2n + 1) + α (θ = iπ2n + α) for integer n and

real α.
33In general we are free to consider bound states in any fusion channel χ with any mass m

(χ)
b . Here we choose

the minimum spectrum allowed by the categorical symmetry. This is in contrast with the An example where the

minimum spectrum is the one without bound states since the fusion rule v× v = 0+1 does not allow the scattered

particles to be considered as bound states.
34Note that while A0(s) has no s-channel pole, the crossing equations above produce a pole in the t-channel (i.e.

at s = 4m2 −m2 = 3m2) in both fusion channels.
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(a)

(b)

Figure 7: Space of allowed amplitudes Aχ(s) for Fibonacci category. (a) Optimal bounds for

the two fusion channel amplitudes at s∗ ≈ 3.41m2 and the (squared) cubic coupling g2. The

dark blue section at the bottom has g = 0 and matches the previous bounds found for A5 (see

Figure 6. The three dots signal integrable solutions. (b) Projection into the {A1/2(s∗), A0(s∗)}
plane. The shaded regions are the fixed g2 sections marked in the 3D plot above. The lower

vertices in blue indicate the integrable amplitudes corresponding to known physical models: the

subleading magnetic deformation of tricritical Ising (light blue) and the 3-state Potts deformed

by the operator Z + Z∗ (dark blue).

produce a slice of the 3d plot and repeat for many couplings. The resulting bounds are presented

in Figure 7, where the allowed space has a cone/spear-like shape.
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Let us first discuss the g2 = 0 section in dark blue. This space is actually the same what we

found for A5 in Figure 6. The reason is quite simple: mathematically, the case without bound

states brings us back to the same system of equations as we had before since Aχ(s) are free of

poles and for n = 5 the quantum dimensions in (68) are dA5

1/2 = dA5
1 = 1+

√
5

2
= dFibo

1/2 . Note however

that the interpretation for the actual kink scattering is different: here we are dealing with theories

which flow to a gapped phase with two vacua instead of four. The relation between the two is

the Z2 orbifold alluded to in Section 2.4. In practice, all one needs to do is identify the A5 labels

as 0 ↔ 3/2, 1/2 ↔ 1. In this way we see for instance that the scattering process described by

the amplitude S
0,1/2
1/2,1(s) in A5 becomes S

0,1/2
1/2,1/2(s) in the orbifolded version which is indeed allowed

in the Fibonacci category. However, the full symmetry preserved by this orbifold procedure is

Fib×Z2, so that we see an enhancement of the symmetry in this g2 = 0 slice. This is only possible

when g = 0 since Fib×Z2 does not admit the interpretation of the breather as a kink anti-kink

bound state, see discussion around (32). The two dots at the vertices mark the integrable solutions

obtained by setting n = 5 in (69) for the lower vertex and multiplying by overall minus sign for

the upper one. The lower vertex is the orbifold version of the M5 − ϕ1,3 and describes another

physical system: the 3-state Potts critical model deformed by Z + Z∗, where these fields are the

two primaries with Kac labels r = 1, s = 3. Once more, the associated physical model for the

upper vertex is unknown.

Passing to the rest of the bounds, note there is a sharp tip at g2 ≈ 2.19 which can be understood

from the fact that there is a unique amplitude with the maximum cubic coupling allowed by

analyticity, modified crossing and unitarity. The Aχ(s) → −Aχ(s) symmetry in the g2 = 0

bounds is lost for g ̸= 0, as is clear from Figure 7b. This is because the residue at the bound state

pole has a definite (positive) sign. There is a third integrable point at the boundary of the allowed

region, marked with a lighter blue point. It corresponds to the ϕ2,1 deformation of the tricritical

Ising model M4 proposed in [31] and revised in the context of non-invertible symmetries in our

previous work [1]. The partial amplitudes in terms of the rapidity θ are

A0(θ) = R(θ) sinh

(
iπ + θ

5/9

)
, A1(θ) = R(θ) sinh

(
iπ − θ

5/9

)
, (71)

R(θ) = − sinh−1

(
iπ + θ

5/9

)
f−2/5 (9θ/5) f3/5(9θ/5)F−1/9(θ)F2/9(θ) ,

where fα(θ) =
sinh( θ+iαπ

2 )
sinh( θ−iαπ

2 )
and Fα(θ) = −fα(θ)fα(iπ−θ). Although not obvious from the plots, this

point is also a cusp in the 3D shape, which nicely matches our expectation that physical theories

take a special place in the allowed space of amplitudes. We sampled the rest of the extremal

amplitudes and found a similar pattern as for An. The amplitudes saturate unitarity, do not

satisfy the Yang-Baxter equations (67) and display a simple analytic structure with no oscillating

behaviour in energy. The points signaled in Figure 7b are all the physical systems we can locate

with certainty, but as emphasized in the previous section all models with this minimal spectrum

and a global Fibonacci symmetry should be contained in these bounds.
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4 Conclusion and future directions

In this work we have demonstrated that non-invertible (categorical) symmetries can be efficiently

implemented in an S-matrix bootstrap framework, opening the way to the study of non-invertible-

symmetric scattering in 1+1 dimensions.

In the first part, we described kink multiplets and their scattering using the Symmetry Topo-

logical Field Theory (SymTFT), extending our previous results [1] to cover general spontaneous

breaking patterns of fusion categories and general kink multiplets. The SymTFT is a universal

framework for studying categorical symmetries, which works also in higher dimensions. We thus

expect that the approach in this paper, along with recent findings by one of the authors [38], paves

the way for higher-dimensional generalizations. Additionally, this formulation intuitively describes

the fusion structure of kink multiplets, imposing nontrivial selection rules on bound states, as we

have seen in Sections 2.4 and 3.4.

In the second part, we incorporated non-invertible symmetries into the S-matrix bootstrap by

introducing a specialized basis of projectors. These projectors automatically incorporate both the

Ward identity of non-invertible symmetries and the modified crossing rules. By charting the space

of symmetric S-matrices, we showed that known integrable systems appear as cusps in the space

of allowed partial-wave amplitudes.

This work serves as a proof-of-concept, illustrating the potential of combining categorical sym-

metries and the S-matrix bootstrap to impose stringent constraints on the space of consistent

S-matrices. It naturally leaves many interesting open questions:

• S-matrix bootstrap for Haagerup fusion category. Interesting targets for the S-matrix boot-

strap are theories with Haagerup fusion category symmetry. Haagerup fusion category is an

“exceptional” fusion category, initially constructed from a subfactor of von Neumann alge-

bra [106, 107]. Unlike other fusion categories that are related to finite groups or quantum

groups, its QFT realization remains unclear. Recently, evidence suggests that CFTs with

Haagerup fusion category may arise from the continuum limit of lattice models [108, 109].

However, the detailed properties of these CFTs remain unknown. Applying the S-matrix

bootstrap to theories with Haagerup fusion category could illuminate the nature of such

theories, offering insights into both the ultraviolet (UV) CFT and its relevant deformations.

The techniques developed in this paper will be instrumental in pursuing this line of inves-

tigation. Another important question is to construct integrable S-matrices with Haagerup

fusion category by directly imposing the Yang-Baxter equation. Works in these directions

are currently in progress.

• Form factor bootstrap for theories with non-invertible symmetries. Incorporating information

on the UV fixed point into the S-matrix bootstrap can be achieved by studying form factors

of local operators [23–25]. In the presence of non-invertible symmetries, crossing rules for

form factors are likely modified. Deriving these modified crossing rules and performing a

(numerical) form factor bootstrap are promising future directions. We anticipate that the

SymTFT approach developed in this paper will be useful for this purpose.

• Modified crossing in 2 + 1 dimensions. An important open question is to generalize our

results to higher dimensions. A natural next step in this direction would be to revisit
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modified crossing rules in Chern-Simons-matter theories, found in [110], in light of our

analysis; in particular from the SymTFT perspective. Note that a SymTFT approach for

Chern-Simons-matter theories in (2+1)d has been proposed recently in [76].

• 3+1 dimensions. Finding concrete examples of modified crossing rules in 3 + 1 dimensions

would be extremely interesting. One promising avenue is the monopole-fermion scattering.

Using the extension of the spinor-helicity formalism, recent work [111] has shown that the

standard crossing rule is violated in such processes. Additionally, studies suggest that non-

invertible symmetries play a significant role in the monopole-fermion scattering [112, 113].

Studying these processes using the SymTFT framework could be a first step in this direction.

Alternatively, studying scattering processes involving extended objects, such as surfaces or

domain walls, would be interesting, since non-invertible symmetries in higher dimensions of-

ten act on extended operators. SymTFT descriptions of extended operators can be achieved

following recent results [38].

• Soft dynamics and SymTFT. As mentioned in our previous paper [1] and also in [110], the

examples analyzed here can be seen as toy models for the soft dynamics of gauge theories

and gravity, where the complicated IR dynamics of soft gluons and gravitons is replaced

with simpler TQFT dynamics. Our findings suggest that crossing rules in these theories

(in 3+ 1 dimensions) are also modified, with the modifications determined by the dynamics

in the soft sector. To make further progress, it would be important to study asymptotic

symmetries and soft physics using the SymTFT framework.
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A Flows from minimal models and preserved symmetry

Relevant flows from (unitary) minimal models have a long history. For diagonal minimal models

Mn+1,n, the set of topological Verlinde lines Lr,s is isomorphic to their set of primary operators

ϕr,s [6, 114]. The symmetry action on a primary operator is encoded in the modular S-matrix:

Lr,s
ϕr′,s′

=
Sr,s;r′,s′

S1,1;r′,s′

ϕr′,s′
,

Sr,s;r′,s′ =

√
8

n(n+ 1)
(−)1+rs

′+r′s sin

(
πnrr′

n+ 1

)
sin

(
π(n+ 1)ss′

n

)
.

(72)

The symmetry line Lr,s is preserved by the ϕr′,s′ deformation iff:

Sr,s;r′,s′

S1,1;r′,s′
=
Sr,s;1,1
S1,1;1,1

. (73)
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This equation can be easily on a case-by-case basis. Some implications of the preserved symmetry

are discussed e.g. in [6, 115–117].

The most well known case is the universal ϕ1,3 deformation, which preserves:

An ≃ {Lr,1, r = 1, ..., n− 1} . (74)

We will label lines in the An category by a = 0, 1/2, ..., n/2− 1, with r = 2a+1. Their fusion rule

is given by:

a× b =

min(a+b,n−2+a+b)∑
c=|a−b|

c−a+bmod(1)=0

c , (75)

the name derives from the fact that its objects can be thought of as the nodes of the An−1 Dynkin

diagram:

0 1
2 1

n
2
− 1

...

(76)

In the paper we have also studied RG flows from the c = 4/5 critical Potts model, which is the

Z2 orbifold of the M5 diagonal unitary minimal model. In Potts language the ϕ1,3 deformation

is mapped to the charge conjugation singlet Z + Z∗, see [6] (sec. 5.2.1), preserving the Z2 charge

conjugation symmetry as well as the Fibonacci line. Since the integrable ϕ1,3 flows have no kink

bound states, it follows that neither do the kinks in the Potts model.

B A5 and A5/Z2 categories

We now give some more details on the example considered in the main text: the orbifold of the

M5 minimal model.

The symmetry category of theMn unitary minimal model deformed by the relevant ϕ1,3 operator

is the An category, whose lines are labelled by nodes of the An−1 Dynkin diagrams with F -symbols:[
a b c

d e f

]
= (−1)p

{
a b c

d e f

}
q

, q = e2πi/n , (77)

p = 1
2
[3(a+ b+ c+ d+ e+ f)2 − (a+ d)2 − (b+ e)2 − (c+ f)2] .

The q-deformed Wigner 6j-symbols are given in terms of the quantum dimensions [a] = [a]q =

da =
sin[(2a+1)π/n]

sin(π/n)
as follows{

a b c

d e f

}
q

= ∆(a, b, c)∆(a, e, f)∆(d, b, f)∆(d, e, c)×∑
z

(−1)z [z+1]!
[a+b+d+e−z]![a+c+d+f−z]![b+c+e+f−z]!×

1
[−a−b−c+z]![−c−d−e+z]![−b−d−f+z]![−a−e−f+z]! ,

(78)
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where

∆(a, b, c) =


√

[a+b−c]![a−b+c]![−a+b+c]!
[1+a+b+c]!

if Nabc = 1

0 otherwise .
(79)

For n = 5 we have four lines 1, W̃ , W̃ ′, η̃ with the following identification:

1 W̃ ′ W̃ η̃
(80)

The fusion algebra of this category is Fib× Z2, which is the only possibility for a self-dual fusion

category of rank four [118].

Orbifolding this theory by the Z2 generated by η̃ we obtain a new fusion category, A5/Z2, with

the same fusion ring but inequivalent to A5 at the level of F -symbols.35

The interface between these two symmetries has two components –1, W– and transforms in the

regular representation under both Fib subcategories, generated by W̃ and W , respectively. Thus

φabcuvw = (φ∗)abcũṽw̃ =
1

dwdb

[
v c b

a u w

]
Fib

, a, b, c ;u, v, w ∈ (1,W ) , (81)

while both Z2 symmetries leave the boundary condition invariant:

φaaaηη1 = (φ∗)aaaη̃η̃1 = 1 . (82)

Instead of trying to determine the whole structure of the module category, we focus on the input

needed for the S-matrix bootstrap, namely dual boundary F -symbols:

(φ∗)abc
W̃ ′W̃ ′ũ

, u = (1,W ) . (83)

In particular, we want to show that, in a judicious gauge:

(φ∗)abc
W̃ ′W̃ ′ũ

= (φ∗)abc
W̃W̃ ũ

, (84)

and thus correspond to those of the Fibonacci category. To do this we nucleate a η̃ line between

two W̃ lines:

W̃ W̃

η̃

a b c (85)

We can resolve this configuration either by shrinking the η̃ loop and then joining the W̃ lines or

by the following schematic set of moves:

; ; ; (86)

35In order for them to be equivalent we must have that there exists a line L such that L×L† = 1+ η̃ [51]. This

is clearly not the case for our example.
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leading to the equations:

(φ∗)abc
W̃W̃ ũ

=

[
dW̃ ′

[
W̃ W̃ ũ

W̃ ′ W̃ ′ η̃

]
(φ∗)abb

W̃ η̃W̃ ′(φ
∗)bbc
η̃W̃ W̃ ′

]
(φ∗)abc

W̃W̃ ũ
(87)

The combination dW̃ ′

[
W̃ W̃ W̃

W̃ ′ W̃ ′ η̃

]
is equal to −1 and can be removed by redefining the bulk

W̃ ′W̃ ′η̃ junction. With a bit more work it is also possible to show that (φ∗)aab
η̃W̃ W̃ ′ = (φ∗)abb

W̃ η̃W̃ ′ .

Thus transforming the W̃ ′ a b junction by a factor
[
(φ∗)aab

η̃W̃ W̃ ′

]†
gives the desired gauge. Let us

also discuss the Z2 charge of the kink multiplets. This is described by the matrix:

[η; v]abab , (88)

which is equal to ±1 from (82). Since [η; η̃]aaaa = −1, as the two symmetries are dual of each other

we find that [η; W̃ ]abab = −[η; W̃ ′]abab. The fusion rule W̃ 2 = 1 + W̃ forces the charge of W̃ to be 1,

so:

[η; W̃ ′]abab = −1 . (89)

The action of the remaining lines W and W ′ can be determined from:

[u; ṽ]cdab =
√
dadb

[
u a b

v d c

]
Fib

, for u, v, a, b, c, d ∈ (1,W ) , (90)

and the knowledge of φabcηWW ′ , (φ∗)abc
η̃W̃ W̃ ′ .

C Normalization of junctions and boundary bubbles

We briefly discuss our choice of normalization that leads to the identity (19). In fusion category

(without boundaries), the identity (4) follows from choosing specific normalizations for junction

vector spaces [119, Eq. 195] (see also [15]). This choice is isotropic, that is, it allows line junctions

to be moved around freely while keeping endpoints fixed. For example:36

a b c = a b c = a b c =
√

da db dc . (91)

Note that, in [49] a different convention is used in which junction spaces are orthonormal: the

orthonormal basis can always be constructed using the Gram-Schmidt orthogonalization. This is

not isotropic, but it can be made so by rescaling vectors in V c
ab by

(
dc

dadb

)−1/4

.

It is natural to use an isotropic basis even in the presence of boundaries. As explained above,

we can construct such a basis by first performing the Gram-Schmidt procedure to obtain an

36This is correct provided we assume trivial Frobenius-Shur indicators for self-dual lines.
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orthonormal basis of boundary junctions V b
av, and rescaling them by a factor

(
ga
gb dv

)−1/4

. The

normalization of the junction vertices then gives,

a v b = a v b = a v b =
√

dv ga gb , (92)

which also implies (19).

D More on bootstrap and numerical implementation

In this appendix we give more details on how to optimize primal (dual) functionals F (Fd).

Starting with the primal approach, we choose a linear functional to maximize F [S(s)]. To solve

this optimization problem numerically, we write an ansatz for S(s) with the required analyticity

and crossing symmetry and impose unitarity separately. To give a concrete example, suppose

we want to bound the partial amplitudes at a given energy below threshold Aχ(s∗). For theories

without bound states we would write an ansatz of the form

Aχ(s) =
Nmax∑
n=0

[
a(n)χ ρns0(s) + Cχχ′ a

(n)
χ′ ρ

n
s0
(4m2 − s)

]
, (93)

ρs0(s) ≡
√
4m2 − s0 −

√
4m2 − s√

4m2 − s0 +
√
4m2 − s

, (94)

where Cχχ′ is the crossing matrix, s0 is a subtraction point we are free to choose and a
(n)
χ are the

variables for the optimization problem. The “ρ-variables” make sure the analytic properties of

the amplitude are satisfied, as they put branch points at s = 0, 4m2.37 To impose unitarity we

choose a grid of physical values of sj ≥ 4m2 and demand that |Aχ(sj)|2 ≤ 1. A convenient choice

for the unitarity grid can be written in terms of the zeros of Chebyshev polynomials [23]:

sj =
8m2

1 + cosϕj
, ϕj =

π

2

[
1− cos

(
2j − 1

Ngrid

π

)]
, j = 1, . . . , Ngrid , (95)

which conveniently puts more points close to threshold and infinity.

To find bounds on Aχ(s∗) we can maximize various types of functionals [94]; for instance the

“normal” type Fnorm =
∑

χ nχAχ(s∗) which highlight the points with more curvature or the

“radial” type where we maximize along a given direction Frad = t with the constraint Aχ(s∗) =

t nχ. In either case, we repeat the optimization procedure for many different nχ. For instance, to

produce the bounds in Figure 6 we used the normal functionals for 128 nχ’s uniformly distributed

on a circle, with Ngrid = 2Nmax and Nmax = 10.38

37These were first used for S-matrix bootstrap in [120] but have their origin in similar variables used in conformal

bootstrap introduced in [121].
38The low energy values Aχ(s∗) rapidly converge to the optimal result, however to get a refined picture of the

analytic properties of the amplitudes in the s plane and large energy behaviour we used Nmax = 30 at sampled

points.
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As explained in the main text, this approach explores the space of consistent amplitudes from

the inside, by explicitly constructing amplitudes satisfying all axioms but has the bounds are not

rigorous, since we might find a larger value for maxF as we vary Nmax and Ngrid. In contrast,

the dual approach establishes rigorous upper bounds on F through the minimization of a dual

functional Fd satisfying F ≤ Fd. The dual problem is a standard way to solve convex opti-

mization problems (see e.g. [122] chapter 5) and was worked out in the context of the modern

non-perturbative S-matrix bootstrap first in [94] and in subsequent works [24,25,95–100].

The idea is to introduce dual variables which act as Lagrange multipliers for the S-matrix con-

straints. This can be done by writing a Lagrangian L satisfying F [Aχ(s)] ≤ L with the following

form

L = F [Aχ(s)] +
1

2πi

∑
χ

∮
dsKχ(s)Aχ(s) +

1

π

∑
χ

∞∫
4m2

ds λχ(s)
[
1− |Aχ(s)|2

]
, (96)

where Kχ(s) and λχ(s) ≥ 0 are respectively the Lagrange multipliers for analyticity+crossing and

unitarity. Next we want to find constraints on the dual variables Kχ(s) and λχ(s) such that the

primal variables are eliminated from the problem. In practice, we open up the contour for the first

integral and ask that K(s) transforms under crossing as Kχ(s) = −Cχ′χKχ′(4m2 − s) and falls of

at least like s−3/2 at infinity so that we can group terms into a single integral over physical values

of energy:

0 =
1

2πi

∑
χ

∮
dsKχ(s)Aχ(s) =

2

π

∑
χ

∞∫
4m2

ds Im [Kχ(s)Aχ(s)] + possible residues . (97)

The possible residues might come from Aχ(s) or Kχ(s), depending on the problem at hand. The

point is that we can fix the analytic properties of K(s) so that we cancel the primal functional

F . For the example we had earlier with no bound states we would ask for a pole K(s) ∼ ñχ/2

s−s∗
(and its crossing image) where the residue satisfies ñχ = nχ for the normal functional Fnorm and∑

χ ñχnχ = 1 for the radial one Frad. In this way we are left with

L =
1

π

∑
χ

∞∫
4m2

ds
{
2 Im [Kχ(s)Aχ(s)] + λχ(s)

[
1− |Aχ(s)|2

]}
, (98)

which we can now extremize over Aχ(s). The result of the maximization sets S(s) = iK∗(s)/λ(s)

and gives

max
Aχ

L =
1

π

∑
χ

∞∫
4m2

ds

{
|Kχ(s)|2

λχ(s)
+ λχ(s)

}
. (99)

The expression above already gives a dual functional that depends only on the Lagrange multipli-

ers. Since we are interested in the best bound possible, we minimize over the dual variables. This

can be done trivially for λ(s) which results in the dual functional in the main text39

Fd ≡
2

π

∑
χ

∞∫
4m2

ds |Kχ(s)| = min
λ

max
Aχ

L , (100)

39In the case where there are more constraints in the primal problem, such as fixing the value of the amplitude

at a given s, we would need to consider more dual variables/Lagrange multipliers and minimize over them as well

which might result in extra terms in the dual functional.
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which satisfies max
Aχ

F ≤ min
Kχ

Fd. Let us stress that by minimizing Fd we are putting a rigorous

upper bound on the original optimization problem. Also, if we find the same result with the primal

and dual problems then we can be sure we have the optimal bound.40

To perform the dual optimization numerically we follow the same logic: we first write an ansatz

for Kχ(s) compatible with analyticity in the cut plane and fall-off at infinity, evaluate the integral

by quadrature and finally minimize.

To give a concrete example, let us go back to the case without bound states and set our primal

functional to be Frad = t with Aχ(s∗) = tnχ.
41 We write first the following ansatz

Kχ(s) =

√
2

√
s
√
4− s

Mmax∑
n=0

[
1

s− s∗
b(n)χ ρns0(s)−

1

4m2 − s− s∗
Cχ′χ b

(n)
χ′ ρ

n
s0
(4m2 − s)

]
. (101)

To integrate (100) numerically we can use a polynomial approximation. The idea is to transform

the integral into a weighted sum of the integrand evaluated at some points in the integration

domain:

1∫
−1

dxf(x) ≈
1∫

−1

dx
∑
i

f(xi)Pi(x) =
∑
i

f(xi)wi , Pi(x) =
n∏
j ̸=i

x− xj
xi − xj

, wi =

1∫
−1

dxPi(x) , (102)

where the weights wi are evaluated using
∫ 1

−1
dx xn = 1+(−1)n

n+1
. A suitable change of variables

like x = 2m2−
√
s−4m2

2m2+
√
s−4m2 brings the last equation to the form of (100) and the grid points can be

for instance (95). The final step is to minimize this discretized integral subject to the constraint

2
∑

χ Ress=s∗ [Kχ(s)] nχ = 1, which can be done in e.g. Mathematica. With this method (setting

Mmax = 5 and Ngrid = 30) we reproduced the bounds presented in the main text so that we know

they are optimal.
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[67] M. Del Zotto and I.n. Garćıa Etxebarria, Global structures from the infrared, JHEP 11 (2023)
058 [2204.06495].

[68] F. Apruzzi, I. Bah, F. Bonetti and S. Schafer-Nameki, Noninvertible Symmetries from Holography
and Branes, Phys. Rev. Lett. 130 (2023) 121601 [2208.07373].

[69] A. Antinucci, F. Benini, C. Copetti, G. Galati and G. Rizi, The holography of non-invertible
self-duality symmetries, 2210.09146.

[70] A. Antinucci and F. Benini, Anomalies and gauging of U(1) symmetries, 2401.10165.

[71] T.D. Brennan and Z. Sun, A SymTFT for Continuous Symmetries, 2401.06128.

[72] F. Bonetti, M. Del Zotto and R. Minasian, SymTFTs for Continuous non-Abelian Symmetries,
2402.12347.

[73] F. Apruzzi, F. Bedogna and N. Dondi, SymTh for non-finite symmetries, 2402.14813.

[74] A. Antinucci, F. Benini and G. Rizi, Holographic duals of symmetry broken phases, 2408.01418.

[75] J. Kaidi, K. Ohmori and Y. Zheng, Symmetry TFTs for Non-invertible Defects, Commun. Math.
Phys. 404 (2023) 1021 [2209.11062].

[76] R. Argurio, F. Benini, M. Bertolini, G. Galati and P. Niro, On the Symmetry TFT of
Yang-Mills-Chern-Simons theory, 2404.06601.

[77] D.-C. Lu, Z. Sun and Z. Zhang, Exploring G-ality defects in 2-dim QFTs, 2406.12151.

42

https://doi.org/10.1063/5.0079062
https://doi.org/10.1063/5.0079062
https://arxiv.org/abs/2102.05664
https://doi.org/10.1016/0370-2693(91)91283-2
https://arxiv.org/abs/2310.16878
https://arxiv.org/abs/2209.07471
https://doi.org/10.1088/1126-6708/1998/12/012
https://arxiv.org/abs/hep-th/9812012
https://arxiv.org/abs/2305.17159
https://arxiv.org/abs/2305.17165
https://arxiv.org/abs/2308.11707
https://arxiv.org/abs/2308.11706
https://doi.org/10.1103/PhysRevB.108.075105
https://arxiv.org/abs/2205.06244
https://arxiv.org/abs/2403.00905
https://doi.org/10.1007/s00220-023-04737-2
https://arxiv.org/abs/2112.02092
https://doi.org/10.1007/JHEP11(2023)058
https://doi.org/10.1007/JHEP11(2023)058
https://arxiv.org/abs/2204.06495
https://doi.org/10.1103/PhysRevLett.130.121601
https://arxiv.org/abs/2208.07373
https://arxiv.org/abs/2210.09146
https://arxiv.org/abs/2401.10165
https://arxiv.org/abs/2401.06128
https://arxiv.org/abs/2402.12347
https://arxiv.org/abs/2402.14813
https://arxiv.org/abs/2408.01418
https://doi.org/10.1007/s00220-023-04859-7
https://doi.org/10.1007/s00220-023-04859-7
https://arxiv.org/abs/2209.11062
https://arxiv.org/abs/2404.06601
https://arxiv.org/abs/2406.12151


[78] S. Franco and X. Yu, Generalized Symmetries in 2D from String Theory: SymTFTs, Intrinsic
Relativeness, and Anomalies of Non-invertible Symmetries, 2404.19761.

[79] E. Nardoni, M. Sacchi, O. Sela, G. Zafrir and Y. Zheng, Dimensionally Reducing Generalized
Symmetries from (3+1)-Dimensions, 2403.15995.

[80] M. Del Zotto, S.N. Meynet and R. Moscrop, Remarks on Geometric Engineering, Symmetry
TFTs and Anomalies, 2402.18646.

[81] F. Apruzzi, F. Bonetti, D.S.W. Gould and S. Schafer-Nameki, Aspects of Categorical Symmetries
from Branes: SymTFTs and Generalized Charges, 2306.16405.

[82] J. Kaidi, E. Nardoni, G. Zafrir and Y. Zheng, Symmetry TFTs and anomalies of non-invertible
symmetries, JHEP 10 (2023) 053 [2301.07112].

[83] A. Kapustin and N. Saulina, Surface operators in 3d Topological Field Theory and 2d Rational
Conformal Field Theory, 1012.0911.

[84] A. Kapustin and N. Saulina, Topological boundary conditions in abelian Chern-Simons theory,
Nucl. Phys. B 845 (2011) 393 [1008.0654].

[85] L. Kong, Anyon condensation and tensor categories, Nucl. Phys. B 886 (2014) 436 [1307.8244].

[86] J. Kaidi, Z. Komargodski, K. Ohmori, S. Seifnashri and S.-H. Shao, Higher central charges and
topological boundaries in 2+1-dimensional TQFTs, SciPost Phys. 13 (2022) 067 [2107.13091].

[87] F. Benini, C. Copetti and L. Di Pietro, Factorization and global symmetries in holography,
SciPost Phys. 14 (2023) 019 [2203.09537].

[88] C. Itzykson and J.B. Zuber, Quantum Field Theory, International Series In Pure and Applied
Physics, McGraw-Hill, New York (1980).

[89] M. Kruczenski, J. Penedones and B.C. van Rees, Snowmass White Paper: S-matrix Bootstrap,
2203.02421.

[90] L.D. Landau, On analytic properties of vertex parts in quantum field theory, Nucl. Phys. 13
(1959) 181.

[91] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys. 1 (1960)
429.

[92] J. Bros, H. Epstein and V. Glaser, A proof of the crossing property for two-particle amplitudes in
general quantum field theory, Commun. Math. Phys. 1 (1965) 240.

[93] S. Caron-Huot, M. Giroux, H.S. Hannesdottir and S. Mizera, Crossing beyond scattering
amplitudes, JHEP 04 (2024) 060 [2310.12199].
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