002890580 001__ 2890580
002890580 005__ 20240318150516.0
002890580 0248_ $$aoai:cds.cern.ch:2890580$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002890580 037__ $$9arXiv$$aarXiv:2402.15410$$chep-ex
002890580 037__ $$9arXiv:reportnumber$$aFERMILAB-PUB-24-0084-AD-CSAID-PPD
002890580 035__ $$9arXiv$$aoai:arXiv.org:2402.15410
002890580 035__ $$9Inspire$$aoai:inspirehep.net:2761441$$d2024-03-04T00:05:42Z$$h2024-03-04T08:47:05Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002890580 035__ $$9Inspire$$a2761441
002890580 041__ $$aeng
002890580 100__ $$aAguillard, D.P.$$uMichigan U.$$vUniversity of Michigan,Ann Arbor,Michigan,USA
002890580 245__ $$9arXiv$$aDetailed Report on the Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm
002890580 269__ $$c2024-02-23
002890580 300__ $$a48 p
002890580 500__ $$9arXiv$$a48 pages, 29 figures; 4 pages of Supplement Material
002890580 520__ $$9arXiv$$aWe present details on a new measurement of the muon magnetic anomaly, $a_\mu = (g_\mu -2)/2$. The result is based on positive muon data taken at Fermilab's Muon Campus during the 2019 and 2020 accelerator runs. The measurement uses $3.1$ GeV$/c$ polarized muons stored in a $7.1$-m-radius storage ring with a $1.45$ T uniform magnetic field. The value of $ a_{\mu}$ is determined from the measured difference between the muon spin precession frequency and its cyclotron frequency. This difference is normalized to the strength of the magnetic field, measured using Nuclear Magnetic Resonance (NMR). The ratio is then corrected for small contributions from beam motion, beam dispersion, and transient magnetic fields. We measure $a_\mu = 116 592 057 (25) \times 10^{-11}$ (0.21 ppm). This is the world's most precise measurement of this quantity and represents a factor of $2.2$ improvement over our previous result based on the 2018 dataset. In combination, the two datasets yield $a_\mu(\text{FNAL}) = 116 592 055 (24) \times 10^{-11}$ (0.20 ppm). Combining this with the measurements from Brookhaven National Laboratory for both positive and negative muons, the new world average is $a_\mu$(exp) $ = 116 592 059 (22) \times 10^{-11}$ (0.19 ppm).
002890580 540__ $$3preprint$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002890580 595_D $$aG$$d2024-02-29$$sfullabs
002890580 595_D $$aG$$d2024-03-03$$sprinted
002890580 65017 $$2arXiv$$anucl-ex
002890580 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002890580 65017 $$2arXiv$$ahep-ph
002890580 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002890580 65017 $$2arXiv$$ahep-ex
002890580 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002890580 690C_ $$aCERN
002890580 690C_ $$aPREPRINT
002890580 693__ $$aFNAL E 0989
002890580 700__ $$aAlbahri, T.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aAllspach, D.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aAnisenkov, A.$$uNovosibirsk State U.$$uNovosibirsk, IYF$$vNovosibirsk State University.$$vBudker Institute of Nuclear Physics,Novosibirsk,Russia
002890580 700__ $$aBadgley, K.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aBaeßler, S.$$uOak Ridge$$uVirginia U.$$vOak Ridge National Laboratory.$$vUniversity of Virginia,Charlottesville,Virginia,USA
002890580 700__ $$aBailey, I.$$uCockcroft Inst. Accel. Sci. Tech.$$uLancaster U.$$uCERN$$vThe Cockcroft Institute of Accelerator Science and Technology,Daresbury,United Kingdom.$$vLancaster University,Lancaster,United Kingdom
002890580 700__ $$aBailey, L.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aBaranov, V.A.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aBarlas-Yucel, E.$$uIllinois U., Urbana$$vUniversity of Illinois at Urbana-Champaign,Urbana,Illinois,USA
002890580 700__ $$aBarrett, T.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aBarzi, E.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aBedeschi, F.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aBerz, M.$$uMichigan State U.$$vMichigan State University,East Lansing,Michigan,USA
002890580 700__ $$aBhattacharya, M.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aBinney, H.P.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aBloom, P.$$uNorth Carolina Central U.$$vNorth Central College,Naperville,Illinois,USA
002890580 700__ $$aBono, J.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aBottalico, E.$$uINFN, Pisa$$uU. Liverpool (main)$$vINFN,Sezione di Pisa,Pisa,Italy.$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aBowcock, T.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aBraun, S.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aBressler, M.$$uMassachusetts U., Amherst$$vDepartment of Physics,University of Massachusetts,Amherst,Massachusetts,USA
002890580 700__ $$aCantatore, G.$$uTrieste U.$$uINFN, Trieste$$vUniversità di Trieste,Trieste,Italy.$$vINFN,Sezione di Trieste,Trieste,Italy
002890580 700__ $$aCarey, R.M.$$uBoston U.$$vBoston University,Boston,Massachusetts,USA
002890580 700__ $$aCasey, B.C.K.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aCauz, D.$$uINFN, Udine$$uUdine U.$$vINFN Gruppo Collegato di Udine,Sezione di Trieste,Udine,Italy.$$vUniversità di Udine,Udine,Italy
002890580 700__ $$aChakraborty, R.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aChapelain, A.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aChappa, S.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aCharity, S.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aChen, C.$$uShanghai Jiao Tong U.$$uShanghai Jiaotong U.$$vTsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai,China$$vSchool of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aCheng, M.$$uIllinois U., Urbana$$vUniversity of Illinois at Urbana-Champaign,Urbana,Illinois,USA
002890580 700__ $$aChislett, R.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aChu, Z.$$uShanghai Jiaotong U.$$uSKLPPC, Shanghai$$vShanghai Key Laboratory for Particle Physics and Cosmology$$vKey Lab for Particle Physics,Astrophysics and Cosmology (MOE).$$vSchool of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aChupp, T.E.$$uMichigan U.$$vUniversity of Michigan,Ann Arbor,Michigan,USA
002890580 700__ $$aClaessens, C.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aConvery, M.E.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aCorrodi, S.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aCotrozzi, L.$$uPisa U.$$uINFN, Pisa$$uU. Liverpool (main)$$vUniversità di Pisa,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aCrnkovic, J.D.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aDabagov, S.$$uMoscow Phys. Eng. Inst.$$uFrascati$$vLebedev Physical Institute and NRNU MEPhI.$$vINFN,Laboratori Nazionali di Frascati,Frascati,Italy
002890580 700__ $$aDebevec, P.T.$$uIllinois U., Urbana$$vUniversity of Illinois at Urbana-Champaign,Urbana,Illinois,USA
002890580 700__ $$aDi Falco, S.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aDi Sciascio, G.$$uINFN, Rome2$$uU. Rome 2, Tor Vergata (main)$$vINFN,Sezione di Roma Tor Vergata,Rome,Italy
002890580 700__ $$aDonati, S.$$uPisa U.$$uINFN, Pisa$$vUniversità di Pisa,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aDrendel, B.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aDriutti, A.$$uPisa U.$$uINFN, Pisa$$vUniversità di Pisa,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aDuginov, V.N.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aEads, M.$$uNorthern Illinois U.$$uFermilab$$vNorthern Illinois University,DeKalb,Illinois,USA
002890580 700__ $$aEdmonds, A.$$uBoston U.$$uCity Coll., N.Y.$$vBoston University,Boston,Massachusetts,USA$$vCity University of New York at York College,Jamaica,New York,USA
002890580 700__ $$aEsquivel, J.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aFarooq, M.$$uMichigan U.$$vUniversity of Michigan,Ann Arbor,Michigan,USA
002890580 700__ $$aFatemi, R.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aFerrari, C.$$uCNR, INO, Pisa$$uINFN, Pisa$$vIstituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aFertl, M.$$uU. Mainz, PRISMA$$vInstitute of Physics and Cluster of Excellence PRISMA+,Johannes Gutenberg University Mainz,Mainz,Germany
002890580 700__ $$aFienberg, A.T.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aFioretti, A.$$uCNR, INO, Pisa$$uINFN, Pisa$$vIstituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aFlay, D.$$uMassachusetts U., Amherst$$vDepartment of Physics,University of Massachusetts,Amherst,Massachusetts,USA
002890580 700__ $$aFoster, S.B.$$uBoston U.$$vBoston University,Boston,Massachusetts,USA
002890580 700__ $$aFriedsam, H.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aFroemming, N.S.$$uNorthern Illinois U.$$uFermilab$$vNorthern Illinois University,DeKalb,Illinois,USA
002890580 700__ $$aGabbanini, C.$$uCNR, INO, Pisa$$uINFN, Pisa$$vIstituto Nazionale di Ottica - Consiglio Nazionale delle Ricerche,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aGaines, I.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aGalati, M.D.$$uPisa U.$$uINFN, Pisa$$vUniversità di Pisa,Pisa,Italy.$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aGanguly, S.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aGarcia, A.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aGeorge, J.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aGibbons, L.K.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aGioiosa, A.$$uINFN, Rome2$$uU. Rome 2, Tor Vergata (main)$$vINFN,Sezione di Roma Tor Vergata,Rome,Italy.
002890580 700__ $$aGiovanetti, K.L.$$uJames Madison U.$$vDepartment of Physics and Astronomy,James Madison University,Harrisonburg,Virginia,USA
002890580 700__ $$aGirotti, P.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aGohn, W.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aGoodenough, L.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aGorringe, T.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aGrange, J.$$uMichigan U.$$vUniversity of Michigan,Ann Arbor,Michigan,USA
002890580 700__ $$aGrant, S.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aGray, F.$$uColorado U., Denver$$vRegis University,Denver,Colorado,USA
002890580 700__ $$aHaciomeroglu, S.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aHalewood-Leagas, T.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aHampai, D.$$uFrascati$$vINFN,Laboratori Nazionali di Frascati,Frascati,Italy
002890580 700__ $$aHan, F.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aHempstead, J.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aHertzog, D.W.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aHesketh, G.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aHess, E.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aHibbert, A.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aHodge, Z.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aHong, K.W.$$uVirginia U.$$vUniversity of Virginia,Charlottesville,Virginia,USA
002890580 700__ $$aHong, R.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aHu, T.$$uShanghai Jiao Tong U.$$vTsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aHu, Y.$$uShanghai Jiaotong U.$$uSKLPPC, Shanghai$$vShanghai Key Laboratory for Particle Physics and Cosmology
002890580 700__ $$aIacovacci, M.$$uNaples U.$$uINFN, Naples$$vUniversità di Napoli,Naples,Italy.
002890580 700__ $$aIncagli, M.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy
002890580 700__ $$aKammel, P.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aKargiantoulakis, M.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aKaruza, M.$$uRijeka U.$$vUniversity of Rijeka,Rijeka,Croatia.
002890580 700__ $$aKaspar, J.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aKawall, D.$$uMassachusetts U., Amherst$$vDepartment of Physics,University of Massachusetts,Amherst,Massachusetts,USA
002890580 700__ $$aKelton, L.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aKeshavarzi, A.$$uManchester U.$$vDepartment of Physics and Astronomy,University of Manchester,Manchester,United Kingdom
002890580 700__ $$aKessler, D.S.$$uMassachusetts U., Amherst$$vDepartment of Physics,University of Massachusetts,Amherst,Massachusetts,USA
002890580 700__ $$aKhaw, K.S.$$uShanghai Jiao Tong U.$$vTsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aKhechadoorian, Z.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aKhomutov, N.V.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aKiburg, B.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aKiburg, M.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aKim, O.$$uMississippi U.$$vUniversity of Mississippi,University,Mississippi,USA
002890580 700__ $$aKinnaird, N.$$uBoston U.$$vBoston University,Boston,Massachusetts,USA
002890580 700__ $$aKraegeloh, E.$$uMichigan U.$$vUniversity of Michigan,Ann Arbor,Michigan,USA
002890580 700__ $$aKrylov, V.A.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aKuchinskiy, N.A.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aLabe, K.R.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aLaBounty, J.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aLancaster, M.$$uManchester U.$$vDepartment of Physics and Astronomy,University of Manchester,Manchester,United Kingdom
002890580 700__ $$aLee, S.$$uIBS, Daejeon, CAPP$$vCenter for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS),Daejeon,Republic of Korea
002890580 700__ $$aLi, B.$$uHangzhou, Zhejiang U.$$vResearch Center for Graph Computing,Zhejiang Lab,Hangzhou,Zhejiang,China.
002890580 700__ $$aLi, D.$$uSUSTech, SKLQSE, Shenzhen$$vShenzhen Technology University,Shenzhen,Guangdong,China.
002890580 700__ $$aLi, L.$$uShanghai Jiaotong U.$$uSKLPPC, Shanghai$$vShanghai Key Laboratory for Particle Physics and Cosmology
002890580 700__ $$aLogashenko, I.$$uNovosibirsk State U.$$vNovosibirsk State University.
002890580 700__ $$aCampos, A. Lorente$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aLu, Z.$$uShanghai Jiaotong U.$$uSKLPPC, Shanghai$$vShanghai Key Laboratory for Particle Physics and Cosmology
002890580 700__ $$aLucà, A.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aLukicov, G.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aLusiani, A.$$uPisa, Scuola Normale Superiore$$vScuola Normale Superiore,Pisa,Italy.
002890580 700__ $$aLyon, A.L.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aMacCoy, B.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aMadrak, R.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aMakino, K.$$uMichigan State U.$$vMichigan State University,East Lansing,Michigan,USA
002890580 700__ $$aMastroianni, S.$$uINFN, Naples$$vINFN,Sezione di Napoli,Naples,Italy
002890580 700__ $$aMiller, J.P.$$uBoston U.$$vBoston University,Boston,Massachusetts,USA
002890580 700__ $$aMiozzi, S.$$uINFN, Rome2$$uU. Rome 2, Tor Vergata (main)$$vINFN,Sezione di Roma Tor Vergata,Rome,Italy
002890580 700__ $$aMitra, B.$$uMississippi U.$$vUniversity of Mississippi,University,Mississippi,USA
002890580 700__ $$aMorgan, J.P.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aMorse, W.M.$$uBrookhaven$$vBrookhaven National Laboratory,Upton,New York,USA
002890580 700__ $$aMott, J.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aNath, A.$$uNaples U.$$uINFN, Naples$$vUniversità di Napoli,Naples,Italy.
002890580 700__ $$aNg, J.K.$$uShanghai Jiao Tong U.$$vTsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aNguyen, H.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aOksuzian, Y.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aOmarov, Z.$$uKAIST, Taejon$$vDepartment of Physics,Korea Advanced Institute of Science and Technology (KAIST),Daejeon,Republic of Korea
002890580 700__ $$aOsofsky, R.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aPark, S.$$uIBS, Daejeon, CAPP$$vCenter for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS),Daejeon,Republic of Korea
002890580 700__ $$aPauletta, G.$$uINFN, Udine$$uUdine U.$$vINFN Gruppo Collegato di Udine,Sezione di Trieste,Udine,Italy.
002890580 700__ $$aPiacentino, G.M.$$uINFN, Rome2$$uU. Rome 2, Tor Vergata (main)$$vINFN,Sezione di Roma Tor Vergata,Rome,Italy.
002890580 700__ $$aPilato, R.N.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aPitts, K.T.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aPlaster, B.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aPočanić, D.$$uVirginia U.$$vUniversity of Virginia,Charlottesville,Virginia,USA
002890580 700__ $$aPohlman, N.$$uNorthern Illinois U.$$uFermilab$$vNorthern Illinois University,DeKalb,Illinois,USA
002890580 700__ $$aPolly, C.C.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aPrice, J.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aQuinn, B.$$uMississippi U.$$vUniversity of Mississippi,University,Mississippi,USA
002890580 700__ $$aQureshi, M.U.H.$$uU. Mainz, PRISMA$$vInstitute of Physics and Cluster of Excellence PRISMA+,Johannes Gutenberg University Mainz,Mainz,Germany
002890580 700__ $$aRamachandran, S.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aRamberg, E.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aReimann, R.$$uU. Mainz, PRISMA$$vInstitute of Physics and Cluster of Excellence PRISMA+,Johannes Gutenberg University Mainz,Mainz,Germany
002890580 700__ $$aRoberts, B.L.$$uBoston U.$$vBoston University,Boston,Massachusetts,USA
002890580 700__ $$aRubin, D.L.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aSakurai, M.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aSanti, L.$$uINFN, Udine$$uUdine U.$$vINFN Gruppo Collegato di Udine,Sezione di Trieste,Udine,Italy.
002890580 700__ $$aSchlesier, C.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aSchreckenberger, A.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aSemertzidis, Y.K.$$uIBS, Daejeon, CAPP$$vCenter for Axion and Precision Physics (CAPP) / Institute for Basic Science (IBS),Daejeon,Republic of Korea
002890580 700__ $$aShemyakin, D.$$uNovosibirsk State U.$$vNovosibirsk State University.
002890580 700__ $$aSorbara, M.$$uRome U., Tor Vergata$$vUniversità di Roma Tor Vergata,Rome,Italy.
002890580 700__ $$aStapleton, J.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aStill, D.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aStöckinger, D.$$uDresden, Tech. U.$$vInstitut für Kern- und Teilchenphysik,Technische Universität Dresden,Dresden,Germany
002890580 700__ $$aStoughton, C.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aStratakis, D.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aSwanson, H.E.$$uPennsylvania U.$$vUniversity of Washington,Seattle,Washington,USA
002890580 700__ $$aSweetmore, G.$$uManchester U.$$vDepartment of Physics and Astronomy,University of Manchester,Manchester,United Kingdom
002890580 700__ $$aSweigart, D.A.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aSyphers, M.J.$$uNorthern Illinois U.$$uFermilab$$vNorthern Illinois University,DeKalb,Illinois,USA
002890580 700__ $$aTarazona, D.A.$$uCornell U.$$vCornell University,Ithaca,New York,USA
002890580 700__ $$aTeubner, T.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aTewsley-Booth, A.E.$$uKentucky U.$$vUniversity of Kentucky,Lexington,Kentucky,USA
002890580 700__ $$aTishchenko, V.$$uBrookhaven$$vBrookhaven National Laboratory,Upton,New York,USA
002890580 700__ $$aTran, N.H.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aTurner, W.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 700__ $$aValetov, E.$$uMichigan State U.$$vMichigan State University,East Lansing,Michigan,USA
002890580 700__ $$aVasilkova, D.$$uUniversity Coll. London$$vDepartment of Physics and Astronomy,University College London,London,United Kingdom
002890580 700__ $$aVenanzoni, G.$$uINFN, Pisa$$vINFN,Sezione di Pisa,Pisa,Italy.
002890580 700__ $$aVolnykh, V.P.$$uDubna, JINR$$vJoint Institute for Nuclear Research,Dubna,Russia
002890580 700__ $$aWalton, T.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aWeisskopf, A.$$uMichigan State U.$$vMichigan State University,East Lansing,Michigan,USA
002890580 700__ $$aWelty-Rieger, L.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aWinter, P.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aWu, Y.$$uArgonne$$vArgonne National Laboratory,Lemont,Illinois,USA
002890580 700__ $$aYu, B.$$uMississippi U.$$vUniversity of Mississippi,University,Mississippi,USA
002890580 700__ $$aYucel, M.$$uFermilab$$vFermi National Accelerator Laboratory,Batavia,Illinois,USA
002890580 700__ $$aZeng, Y.$$uShanghai Jiao Tong U.$$vTsung-Dao Lee Institute,Shanghai Jiao Tong University,Shanghai,China
002890580 700__ $$aZhang, C.$$uU. Liverpool (main)$$vUniversity of Liverpool,Liverpool,United Kingdom
002890580 710__ $$gMuon g-2 Collaboration
002890580 8564_ $$82515135$$s150885$$uhttp://cds.cern.ch/record/2890580/files/run23BeamShape3O.png$$y00004 Azimuthally averaged muon beam distribution summed over $t>\SI{30}{\micro\second}$ ($<M(x,y)>_{\phi}$) from datasets from \RunTwo (2B) on the left and \RunThreeB (3O) on the right. The color represents the intensity, from low intensity in blue (outside) to high intensity in red (inside).
002890580 8564_ $$82515136$$s15908$$uhttp://cds.cern.ch/record/2890580/files/PhaseAcceptance.png$$y00023 Calculation of $\phi_{\mathrm{pa}}$ for calorimeter 13 in data subset 1D (gray) and data subset 2C (blue) using data from the tracker station at 180$^{\circ}$. The shown fit function is of the form $\phi + \Delta\phi \cdot e^{{(-t/\tau_{\phi})}}$.
002890580 8564_ $$82515137$$s6221$$uhttp://cds.cern.ch/record/2890580/files/OmegaAVsCalo.png$$y00012 A representative scan of the blinded R-value versus the calorimeter index for the \RunThreeA dataset and the asymmetry-weighted histogramming method. The black data points are the R-value fit results, and the solid blue line is a straight-line fit to the 24 individual calorimeter R-values. Note the vertical axis includes an analysis-dependent software blinding and cannot be compared to Fig.~\ref{f:comon-unblinded-R} and Table~\ref{t:comon-unblinded-R}.
002890580 8564_ $$82515138$$s19253$$uhttp://cds.cern.ch/record/2890580/files/overview.png$$y00027 The relative muon-weighted magnetic field ($\tilde\omega_{p'}$) as a function of time for the \RunTwo (left side) and \RunThreeA and \RunThreeB (right side). The dipole $m_1$ contribution alone is shown in gray below. On this scale, they barely differ. The lower two plots show the tracked $m_2$ and $m_3$ moments.
002890580 8564_ $$82515139$$s10186$$uhttp://cds.cern.ch/record/2890580/files/syncOffsetVsTime_incAzAvg.png$$y00026 Top: Tracking offset (inability to track field) as a function of azimuth (azi.) around a yoke boundary. Different colors indicate different times after the magnet ramp. Bottom: Amplitude of effect at \SI{45}{\degree} as a function of time after magnet ramp. The x show the azimuthally averaged values scaled up by a factor of x10. A dedicated campaign of back-to-back trolley runs was performed in Run-6 to study this effect.
002890580 8564_ $$82515140$$s13552$$uhttp://cds.cern.ch/record/2890580/files/PileUp.png$$y00006 Illustration of the reconstructed pileup correction for the empirical method. The black curve is the raw energy distribution before the pileup correction. The dashed blue (dotted orange) curves show the reconstructed gain (loss) of positron events due to positron pileup. The agreement between the black curve and the blue curve in the energy region greater than the 3.1 GeV beam energy (vertical gray line) is an indication of the quality of the pileup correction.
002890580 8564_ $$82515141$$s6422$$uhttp://cds.cern.ch/record/2890580/files/RatioVsDataset_1.png$$y00030 $R^{\prime}_{\mu}(T_{r})$ versus data subset. The fit line has a $\chi^2$/ndf$ = 19.31/19$ with a p-value of \SI{44}{\percent}.
002890580 8564_ $$82515142$$s7558$$uhttp://cds.cern.ch/record/2890580/files/OmegaStartTimeScan.png$$y00011 A representative scan of the blinded R-value versus the fit start time for the Run-3a dataset and the asymmetry-weighted histogramming method. The black data points are the R-value fit results. The point-to-point values are highly correlated and the smooth blue curve is the $1$ allowed standard deviation band of any fit result from the canonical \SI{30.1}{\micro\second} fit start time. The allowed deviation band accounts for the statistical correlations between the \SI{30.1}{\micro\second} and $>\SI{30.1}{\micro\second}$ fit results. Note the vertical axis includes an analysis-dependent software blinding and cannot be compared to Fig.~\ref{f:comon-unblinded-R} and Table~\ref{t:comon-unblinded-R}.
002890580 8564_ $$82515143$$s5796$$uhttp://cds.cern.ch/record/2890580/files/Result.png$$y00031 From top to bottom: experimental values of \amu from BNL E821, the FNAL 2021 measurement (FNAL Run-1), this measurement (FNAL Run-2/3), the FNAL combined measurement (FNAL Run-1 + 2/3), and the combined experimental average (Exp. average). The inner tick marks indicate the statistical contribution to the total uncertainties.
002890580 8564_ $$82515144$$s12079$$uhttp://cds.cern.ch/record/2890580/files/PT.png$$y00021 Momentum-time differential decay correction $C_{dd}^{p\text{-}t_0}$ per data subset (black). In gray crosses, correction predictions where the ratio between $p\text{-}t_{0}$ correlations and kicker timing offsets relative to beam injection, based on \texttt{gm2ringsim} beam tracking simulations, is scaled in proportion to the per-data-subset kicker timing offsets.
002890580 8564_ $$82515145$$s6385$$uhttp://cds.cern.ch/record/2890580/files/PX.png$$y00019 Average radial coordinate $\langle x\rangle$ of the beam distribution per momentum offset at injection, from a \texttt{gm2ringsim} tracking simulation of stored muons. In this example, a nominal configuration of the injection parameters is implemented in the simulation. The $dx/d\delta$ correlations to quantify $C_{dd}^{p\text{-}x}$ are obtained from these tracking simulation results.
002890580 8564_ $$82515146$$s5491$$uhttp://cds.cern.ch/record/2890580/files/FastRotationSignal.png$$y00014 Fast-rotation signal from Run-2 data, showing individual turns around the storage ring over short time scales (top) and broader decoherence envelope over long time scales (bottom).
002890580 8564_ $$82515147$$s7038$$uhttp://cds.cern.ch/record/2890580/files/ctags.png$$y00000 Muon-decay positrons accumulated in \RunTwo and \RunThree after DQC. Positrons with \SI{1}{GeV}$<E<$\SI{3}{GeV} hitting the calorimeters $t>$\SI{30}{\micro\second} after injection are shown. The \RunOne equivalent ($15.4\times10^9$) is shown for comparison.
002890580 8564_ $$82515148$$s65971$$uhttp://cds.cern.ch/record/2890580/files/FastRotationTR.png$$y00016 Joint distribution from the fast-rotation $\chi^2$ method of revolution frequency and injection time determined by the direct fit method for the data subset 3N, first bunch in the beam pulse sequence.
002890580 8564_ $$82515149$$s13588$$uhttp://cds.cern.ch/record/2890580/files/EField.png$$y00017 Electric-field corrections $C_E$ by data subset obtained from the tracking analysis method and the fast-rotation $\chi^2$ method. The final values for Run-2, Run-3a, and Run-3b are shown in color, which come from the combination of the calorimeter and tracker-based analyses.
002890580 8564_ $$82515150$$s7568$$uhttp://cds.cern.ch/record/2890580/files/FastRotationSignalZoom.png$$y00013 Fast-rotation signal from Run-2 data, showing individual turns around the storage ring over short time scales (top) and broader decoherence envelope over long time scales (bottom).
002890580 8564_ $$82515151$$s3334563$$uhttp://cds.cern.ch/record/2890580/files/2402.15410.pdf$$yFulltext
002890580 8564_ $$82515152$$s24106$$uhttp://cds.cern.ch/record/2890580/files/syncOffsetVsAzi.png$$y00025 Top: Tracking offset (inability to track field) as a function of azimuth (azi.) around a yoke boundary. Different colors indicate different times after the magnet ramp. Bottom: Amplitude of effect at \SI{45}{\degree} as a function of time after magnet ramp. The x show the azimuthally averaged values scaled up by a factor of x10. A dedicated campaign of back-to-back trolley runs was performed in Run-6 to study this effect.
002890580 8564_ $$82515153$$s34064$$uhttp://cds.cern.ch/record/2890580/files/transientESQ.png$$y00029 Top) The transient magnetic field from the vibration caused by the ESQ pulsing for all times as a function of azimuth in the storage ring. Bottom) The transient magnetic field as a function of time at one specific location (\SI{-17}{deg}). The times during which muons are stored are highlighted by gray bands. The shown field transients are scaled up to the ESQ operation voltage.
002890580 8564_ $$82515154$$s5959$$uhttp://cds.cern.ch/record/2890580/files/AE.png$$y00005 Representative example of the measure decay-asymmetry $A(E)$ versus the positron energy $E$ in the region $0.5-3.1$~GeV. In the A-method, each positron is weighted by $A(E)$ to achieve the greatest possible statistical power in the anomalous precession frequency measurement.
002890580 8564_ $$82515155$$s12567$$uhttp://cds.cern.ch/record/2890580/files/FitResidualsFFT.png$$y00007 Representative example of the discrete Fourier transform (FFT) of the fit residuals for a five-parameter fit (solid blue) and a multi-parameter fit (dotted orange) to the \RunThreeB dataset. The five-parameter Fourier transform indicates the presence of perturbations due to beam dynamics, muon losses, {\it etc}. The five-parameter fit shows peaks corresponding to radial beam oscillations ($f_{\text{CBO}}$, $2f_{\text{CBO}}$), vertical beam oscillations ($f_{\text{VW}}$, $f_y$), couplings between precession and radial frequencies ($f_{\text{CBO}} \pm f_{a}$), and radial and vertical frequencies ($f_{\text{VW}} - f_{\text{CBO}}$). Also evident at low frequencies are the effects of muon losses and other slow effects.
002890580 8564_ $$82515156$$s149924$$uhttp://cds.cern.ch/record/2890580/files/run23BeamShape2B.png$$y00003 Azimuthally averaged muon beam distribution summed over $t>\SI{30}{\micro\second}$ ($<M(x,y)>_{\phi}$) from datasets from \RunTwo (2B) on the left and \RunThreeB (3O) on the right. The color represents the intensity, from low intensity in blue (outside) to high intensity in red (inside).
002890580 8564_ $$82515157$$s16465$$uhttp://cds.cern.ch/record/2890580/files/Temperatures.png$$y00001 Temperature of the calorimeter SiPMs (small dots) and the magnet yokes (thicker lines) across \RunOne, \RunTwo, and \RunThree. The two inserts show a box of four days with a temperature range of \SI{1}{\celsius}. The magnet thermal insulating blanket installed after \RunOne reduced the day-night oscillations of the magnet temperature. The upgraded air conditioning system greatly improved the long-term stability of both the calorimeters and magnet temperature after \RunTwo.
002890580 8564_ $$82515158$$s20741$$uhttp://cds.cern.ch/record/2890580/files/MuonLoss.png$$y00002 Muon loss time distribution L(t) for selected \RunOne (gray), \RunTwo (blue), and \RunThree (orange) data subsets showing the reduction in losses. The values here are normalized to the number of $e^+>1.7$ GeV in each dataset. The large modulation of the muon losses with the frequency $f_{CBO}$ is a reflection of the mechanism of the losses.
002890580 8564_ $$82515159$$s40388$$uhttp://cds.cern.ch/record/2890580/files/fieldMap_twoColumns.png$$y00024 The relative (Rel.) dipole $m_1$ coefficient as a function of azimuth for three field maps with respect to its azimuthal average. A) is from April \nth{8} 2019, the beginning of \RunTwo, B) is from June \nth{20}, 2019, the end of \RunTwo, and C) from March \nth{11}, the end of \RunThree. The peak-to-peak amplitudes are \SI{76}{ppm}, \SI{108}{ppm}, and \SI{93}{ppm}, respectively, with RMSs of \SI{14.6}{ppm}, \SI{20.5}{ppm}, and \SI{15.8}{ppm}.
002890580 8564_ $$82515160$$s7270$$uhttp://cds.cern.ch/record/2890580/files/transientKicker.png$$y00028 Magnetic field transient induced by kicker magnets measured by the optical fiber magnetometer in summer 2021 and summer 2022.
002890580 8564_ $$82515161$$s129136$$uhttp://cds.cern.ch/record/2890580/files/run23CalibrationConst.png$$y00032 Top: Trolley calibration constants per trolley probe for \RunTwo (blue) and \RunThree (orange) and the combination (black). Predictions from \texttt{COMSOL} simulations (gray) with simplified geometry, only considers the trolley shell, show qualitative consistency. Bottom: The difference of \RunTwo and \RunThree calibration constants with respect to the combined value that are used for this analysis.
002890580 8564_ $$82515162$$s5828$$uhttp://cds.cern.ch/record/2890580/files/PullAMethod.png$$y00010 Pulls between the 513 pairs of all $\omega_a$ measurements (top panel) and 45 pairs of A- and RA-method measurements the are used in the $\omega_a$ averaging (bottom panel). The pulls are defined as $( y_i - y_j ) / \sigma_{ij}$ where $y_i$, $y_j$ are the two measurements and $\sigma_{ij}$ is the estimated uncertainty on their difference. The values of $\sigma_{ij}$ are computed using the statistical and systematic uncertainties and their estimated correlations.
002890580 8564_ $$82515163$$s49895$$uhttp://cds.cern.ch/record/2890580/files/PPhi.png$$y00020 Momentum-phase distribution from the momentum-time distribution for one bunch in data subset 2C. The gray markers are the averaged relative spin phases per fractional momentum, exhibiting the correlation that drives $C_{dd}^{p\mathrm{-}t_0}$.
002890580 8564_ $$82515164$$s13384$$uhttp://cds.cern.ch/record/2890580/files/Pitch.png$$y00018 Comparison between method-1 and method-2 of the pitch correction, $C_p$, results for all data subsets available in Run-2 and Run-3. The errors in the two methods are dominated by the tracking uncertainty.
002890580 8564_ $$82515165$$s5992$$uhttp://cds.cern.ch/record/2890580/files/PullAll.png$$y00009 Pulls between the 513 pairs of all $\omega_a$ measurements (top panel) and 45 pairs of A- and RA-method measurements the are used in the $\omega_a$ averaging (bottom panel). The pulls are defined as $( y_i - y_j ) / \sigma_{ij}$ where $y_i$, $y_j$ are the two measurements and $\sigma_{ij}$ is the estimated uncertainty on their difference. The values of $\sigma_{ij}$ are computed using the statistical and systematic uncertainties and their estimated correlations.
002890580 8564_ $$82515166$$s7727$$uhttp://cds.cern.ch/record/2890580/files/AllUnblinded.png$$y00008 Plot of the results for the 19 analyses of the three different datasets. Note the muon-weighted magnetic field \ref{sec:field:muonWeighting} and beam dynamics corrections \ref{sec:bd:corr} are different for the three datasets. The plotted uncertainties are the statistical uncertainties from the multi-parameter fits to the associated time distributions. The allowed statistical and systematic differences between the results for a given dataset are discussed in \ref{ss:fitresults}.
002890580 8564_ $$82515167$$s7200$$uhttp://cds.cern.ch/record/2890580/files/MomentumDistribution.png$$y00015 Fractional momentum distributions from the fast-rotation $\chi^2$ method, the tracking analysis method (data from the straw tracking detector at $180^\circ$), and the corrected Fourier analysis for the data subset 3F.
002890580 8564_ $$82515168$$s56951$$uhttp://cds.cern.ch/record/2890580/files/PhaseMap.png$$y00022 Simulated azimuthally averaged phase maps for the asymmetry-weighted analysis. The coupling between the overall quadratic-like detected phase acceptance in the vertical direction and the in-fill reduction in vertical beam width is the most significant effect on $C_{pa}$.
002890580 960__ $$a11
002890580 980__ $$aPREPRINT