Nothing Special   »   [go: up one dir, main page]

CERN Accélérateur de science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2405.15867 ; CERN-TH-2024-066 ; MITP-24-052 ; FERMILAB-PUB-24-0276-T ; IPPP/24/26
Title Improving Neutrino Energy Reconstruction with Machine Learning
Author(s) Kopp, Joachim (CERN ; Mainz U., Inst. Phys. ; U. Mainz, PRISMA) ; Machado, Pedro (Fermilab) ; MacMahon, Margot (University Coll. London) ; Martinez-Soler, Ivan (Durham U., IPPP)
Imprint 2024-05-24
Number of pages 13
Note 13 pages, 8 figures
Subject category hep-ex ; Particle Physics - Experiment ; hep-ph ; Particle Physics - Phenomenology
Abstract Faithful energy reconstruction is foundational for precision neutrino experiments like DUNE, but is hindered by uncertainties in our understanding of neutrino--nucleus interactions. Here, we demonstrate that dense neural networks are very effective in overcoming these uncertainties by estimating inaccessible kinematic variables based on the observable part of the final state. We find improvements in the energy resolution by up to a factor of two compared to conventional reconstruction algorithms, which translates into an improved physics performance equivalent to a 10-30% increase in the exposure.
Other source Inspire
Copyright/License preprint: (License: CC BY 4.0)



 


 Notice créée le 2024-05-29, modifiée le 2024-12-14


Fichiers:
2405.15867 - Télécharger le documentPDF
bcc7e79ac3b9066341510bfaf1bcadb7 - Télécharger le documentPDF
Lien externe:
Télécharger le documentFermilab Library Server