002861087 001__ 2861087
002861087 003__ SzGeCERN
002861087 005__ 20230607205635.0
002861087 0247_ $$2DOI$$9Elsevier B.V.$$a10.1016/j.nimb.2023.04.051$$qpublication
002861087 0248_ $$aoai:cds.cern.ch:2861087$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002861087 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2663160$$d2023-06-06T11:09:55Z$$h2023-06-07T04:09:18Z$$mmarcxml
002861087 035__ $$9Inspire$$a2663160
002861087 041__ $$aeng
002861087 100__ $$aNichols, M$$uGoteborg, ITP
002861087 245__ $$9Elsevier B.V.$$aInvestigating radioactive negative ion production via double electron capture
002861087 260__ $$c2023
002861087 300__ $$a4 p
002861087 520__ $$9Elsevier B.V.$$aThe relative cross sections for radioactive negative ion production via double electron capture have been measured for collisions between a 40 keV projectile beam of uranium-238 and potassium vapor. This was performed at the collinear resonance ionization spectroscopy (CRIS) experiment at CERN-ISOLDE and is a step towards measuring the electron affinities (EAs) of elements that cannot be efficiently produced in negative ion sources at radioactive ion beam (RIB) facilities. This includes short-lived radioactive isotopes that have low production quantities and heavy and superheavy elements that systematically have smaller EAs than work functions of available ion source materials. Negative ions are particularly sensitive to electron–electron correlation effects, which make such studies ideal for benchmarking atomic structure models that go beyond the independent particle model. While the EAs of most light elements have been measured, experimental investigations on heavier elements, namely the actinides, remain scarce due to their radioactive nature and production difficulty. By developing negative ion production by charge exchange, we aim to make these studies feasible at RIB facilities.
002861087 540__ $$3publication$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002861087 542__ $$3publication$$dThe Author(s)$$g2023
002861087 6531_ $$9Elsevier B.V.$$aNegative ion
002861087 6531_ $$9Elsevier B.V.$$aRadioactive
002861087 6531_ $$9Elsevier B.V.$$aCharge exchange
002861087 6531_ $$9Elsevier B.V.$$aElectron affinity
002861087 6531_ $$9Elsevier B.V.$$aISOLDE
002861087 6531_ $$9Elsevier B.V.$$aCRIS
002861087 690C_ $$aARTICLE
002861087 690C_ $$aCERN
002861087 700__ $$aAthanasakis-Kaklamanakis, M$$uCERN$$uLeuven U.$$vKU Leuven, B-3001 Leuven, Belgium
002861087 700__ $$aBorschevsky, A$$uGroningen U.
002861087 700__ $$aCocolios, T E$$uLeuven U.
002861087 700__ $$aCrosa-Rossa, R$$uGroningen U.
002861087 700__ $$ade Groote, R P$$uLeuven U.
002861087 700__ $$aFlanagan, K T$$uManchester U.
002861087 700__ $$aRuiz, R F Garcia$$uMIT
002861087 700__ $$aGeldhof, S$$uLeuven U.
002861087 700__ $$aHanstorp, D$$uGoteborg, ITP
002861087 700__ $$aKoszorús, Á$$uLeuven U.$$uSCK-CEN, Mol$$vBelgian Nuclear Research Centre (SCK CEN), B-2400 Mol, Belgium
002861087 700__ $$aLalanne, L$$uLeuven U.
002861087 700__ $$aLeimbach, D$$uGoteborg, ITP
002861087 700__ $$aNeyens, G$$uLeuven U.
002861087 700__ $$aReilly, J$$uManchester U.
002861087 700__ $$aRothe, S$$uCERN
002861087 700__ $$aWilkins, S G$$uMIT
002861087 700__ $$aYang, X F$$uPeking U.
002861087 773__ $$c264-267$$mpublication$$pNucl. Instrum. Methods Phys. Res., B$$v541$$wC22-10-03.6$$y2023
002861087 8564_ $$82457005$$s602138$$uhttp://cds.cern.ch/record/2861087/files/Publication.pdf$$yFulltext
002861087 960__ $$a13
002861087 962__ $$b2858888$$k264-267$$ndaejeon20221003
002861087 980__ $$aARTICLE
002861087 980__ $$aConferencePaper