002852698 001__ 2852698
002852698 005__ 20241218043343.0
002852698 0248_ $$aoai:cds.cern.ch:2852698$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002852698 0247_ $$2DOI$$9Elsevier B.V.$$a10.1016/j.nuclphysa.2024.122874$$qpublication
002852698 037__ $$9arXiv$$aarXiv:2303.02579$$chep-ph
002852698 037__ $$aJLAB-PHY-23-3808
002852698 035__ $$9arXiv$$aoai:arXiv.org:2303.02579
002852698 035__ $$9Inspire$$aoai:inspirehep.net:2638645$$d2024-12-17T17:30:20Z$$h2024-12-18T03:00:18Z$$mmarcxml$$ttrue$$uhttps://inspirehep.net/api/oai2d
002852698 035__ $$9Inspire$$a2638645
002852698 041__ $$aeng
002852698 100__ $$aAchenbach, P.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 245__ $$9Elsevier B.V.$$aThe present and future of QCD
002852698 269__ $$c2023-03-04
002852698 260__ $$c2024-04-15
002852698 300__ $$a111 p
002852698 520__ $$9arXiv$$aThis White Paper presents the community inputs and scientific conclusions from the Hot and Cold QCD Town Meeting that took place September 23-25, 2022 at MIT, as part of the Nuclear Science Advisory Committee (NSAC) 2023 Long Range Planning process. A total of 424 physicists registered for the meeting. The meeting highlighted progress in Quantum Chromodynamics (QCD) nuclear physics since the 2015 LRP (LRP15) and identified key questions and plausible paths to obtaining answers to those questions, defining priorities for our research over the coming decade. In defining the priority of outstanding physics opportunities for the future, both prospects for the short (~ 5 years) and longer term (5-10 years and beyond) are identified together with the facilities, personnel and other resources needed to maximize the discovery potential and maintain United States leadership in QCD physics worldwide. This White Paper is organized as follows: In the Executive Summary, we detail the Recommendations and Initiatives that were presented and discussed at the Town Meeting, and their supporting rationales. Section 2 highlights major progress and accomplishments of the past seven years. It is followed, in Section 3, by an overview of the physics opportunities for the immediate future, and in relation with the next QCD frontier: the EIC. Section 4 provides an overview of the physics motivations and goals associated with the EIC. Section 5 is devoted to the workforce development and support of diversity, equity and inclusion. This is followed by a dedicated section on computing in Section 6. Section 7 describes the national need for nuclear data science and the relevance to QCD research.
002852698 520__ $$9Elsevier B.V.$$aThis White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades.
002852698 540__ $$3preprint$$aarXiv nonexclusive-distrib 1.0$$uhttp://arxiv.org/licenses/nonexclusive-distrib/1.0/
002852698 540__ $$3publication$$aCC BY 4.0$$uhttp://creativecommons.org/licenses/by/4.0/
002852698 542__ $$3publication$$dThe Authors$$g2024
002852698 595_D $$aZ$$d2023-03-09$$sabs
002852698 595_D $$aZ$$d2023-03-14$$sprinted
002852698 595__ $$aFor annual report
002852698 65017 $$2arXiv$$anucl-th
002852698 65017 $$2SzGeCERN$$aNuclear Physics - Theory
002852698 65017 $$2arXiv$$anucl-ex
002852698 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002852698 65017 $$2arXiv$$ahep-ex
002852698 65017 $$2SzGeCERN$$aParticle Physics - Experiment
002852698 65017 $$2arXiv$$ahep-ph
002852698 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
002852698 690C_ $$aCERN
002852698 690C_ $$aARTICLE
002852698 700__ $$aAdhikari, D.$$uVirginia Tech.$$vVirginia Tech, Blacksburg, VA 24061, USA
002852698 700__ $$aAfanasev, A.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aAfzal, F.$$uBonn U., HISKP$$uBonn U.$$vHelmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, 53115 Bonn, Germany
002852698 700__ $$aAidala, C.A.$$uMichigan U.$$vUniversity of Michigan, Ann Arbor, MI 48109, USA
002852698 700__ $$aAl-bataineh, A.$$uJordan U. Sci. Tech.$$uYarmouk U.$$uKansas U.$$vYarmouk University, Irbid, Irbid 21163, Jordan$$vUniversity of Kansas, Lawrence, KS 66045, USA
002852698 700__ $$aAlmaalol, D.K.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aAmaryan, M.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aAndroić, D.$$uZagreb U.$$vUniversity of Zagreb, Faculty of Science, Croatia
002852698 700__ $$aArmstrong, W.R.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aArratia, M.$$uUC, Riverside$$uJefferson Lab$$vUniversity of California Riverside, Riverside, CA 92521, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aArrington, J.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aAsaturyan, A.$$uNorth Carolina U., Wilmington$$uYerevan Phys. Inst.$$vUniversity of North Carolina Wilmington, Wilmington, NC 28403, USA$$vA.I. Alikhanyan National Science Laboratory, Yerevan Physics Institute, Yerevan 0036, Armenia
002852698 700__ $$aAschenauer, E.C.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aAtac, H.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aAvakian, H.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aAverett, T.$$uWilliam-Mary Coll.$$vWilliam and Mary, Williamsburg, VA 23185, USA
002852698 700__ $$aAyerbe Gayoso, C.$$uWilliam-Mary Coll.$$vWilliam and Mary, Williamsburg, VA 23185, USA
002852698 700__ $$aBai, X.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aBarish, K.N.$$uUC, Riverside$$vUniversity of California Riverside, Riverside, CA 92521, USA
002852698 700__ $$aBarnea, N.$$uHebrew U.$$vHebrew University of Jerusalem, Jerusalem 9190401, Israel
002852698 700__ $$aBasar, G.$$uNorth Carolina U., Math. Dept.$$uSteklov Math. Inst., Moscow$$vUniversity of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA
002852698 700__ $$aBattaglieri, M.$$uINFN, Genoa$$vIstituto Nazionale di Fisica Nucleare – Sezione di Genova, 16146 Genova, Italy
002852698 700__ $$aBaty, A.A.$$uRice U.$$vRice University, Houston, TX 77005, USA
002852698 700__ $$aBautista, I.$$uPuebla U., Mexico$$vFacultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla, 72570 Puebla, Pue., Mexico
002852698 700__ $$aBazilevsky, A.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aBeattie, C.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aBehera, S.C.$$uIndian Inst. Tech., Madras$$vIndian Institute Of Technology, Madras, Chennai, Tamilnadu, 600036, India
002852698 700__ $$aBellini, V.$$uINFN, Catania$$vIstituto Nazionale di Fisica Nucleare – Sezione di Catania, 95123 Catania, Italy
002852698 700__ $$aBellwied, R.$$uHouston U.$$vUniversity of Houston, Houston, TX 77204, USA
002852698 700__ $$aBenesch, J.F.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aBenmokhtar, F.$$uDuquesne U.$$vDuquesne University, Pittsburgh, PA 15282, USA
002852698 700__ $$aBernardes, C.A.$$uRio Grande do Sul U.$$uSao Paulo, IFT$$vFederal University of Rio Grande do Sul, Porto Alegre 90040-060, Rio Grande do Sul, Brazil$$vSão Paulo State University, São Paulo 01140-070, São Paulo, Brazil
002852698 700__ $$aBernauer, J.C.$$uSUNY, Stony Brook$$uStony Brook U.$$uRIKEN BNL$$vStony Brook University, Stony Brook, NY 11794, USA$$vRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aBhatt, H.$$uMississippi State U.$$vMississippi State University, Mississippi State, MS 39762, USA
002852698 700__ $$aBhatta, S.$$uSUNY, Stony Brook$$uStony Brook U.$$vStony Brook University, Stony Brook, NY 11794, USA
002852698 700__ $$aBoer, M.$$uVirginia Tech.$$vVirginia Tech, Blacksburg, VA 24061, USA
002852698 700__ $$aBoettcher, T.J.$$uCincinnati U.$$vUniversity of Cincinnati, Cincinnati, OH 45221, USA
002852698 700__ $$aBogacz, S.A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aBossi, H.J.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aBrandenburg, J.D.$$uOhio State U.$$vThe Ohio State University, Columbus, OH 43210, USA
002852698 700__ $$aBrash, E.J.$$uJefferson Lab$$vChristopher Newport University, Newport News, VA 23606, USA
002852698 700__ $$aBriceño, R.A.$$uUC, Berkeley (main)$$uLBL, Berkeley$$uUC, Berkeley$$uLBNL, Berkeley$$vUniversity of California Berkeley, Berkeley, CA 94720, USA$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aBriscoe, W.J.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aBrodsky, S.J.$$uSLAC$$vSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA
002852698 700__ $$aBrown, D.A.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aBurkert, V.D.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aCaines, H.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aCali, I.A.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aCamsonne, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aCarman, D.S.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aCaylor, J.$$uSyracuse U.$$vSyracuse University, Syracuse, NY 13244, USA
002852698 700__ $$aCerci, D.S.$$uAdiyaman U.$$uIstanbul U.$$uYildiz Tech. U., Esenler$$vAdiyaman University, Adiyaman 02040, Turkey$$vIstanbul University, Istanbul, Turkey$$vYildiz Technical University, Istanbul 34220, Turkey
002852698 700__ $$aCerci, S.$$uAdiyaman U.$$uIstanbul U.$$uYildiz Tech. U., Esenler$$vAdiyaman University, Adiyaman 02040, Turkey$$vIstanbul University, Istanbul, Turkey$$vYildiz Technical University, Istanbul 34220, Turkey
002852698 700__ $$aChamizo Llatas, M.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aChatterjee, S.$$uIndian Inst. Tech., Madras$$vIndian Institute Of Technology, Madras, Chennai, Tamilnadu, 600036, India
002852698 700__ $$aChen, J.P.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aChen, Y.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aChen, Y.-C.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aChien, Y.-T.$$uGeorgia State U.$$uJefferson Lab$$vGeorgia State University, Atlanta, GA 30303, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aChou, P.-C.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aChu, X.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aChudakov, E.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aCline, E.$$uSUNY, Stony Brook$$uMIT, LNS$$uStony Brook U.$$uMIT$$vStony Brook University, Stony Brook, NY 11794, USA$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aCloët, I.C.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aCole, P.L.$$uLamar U.$$vLamar University, Beaumont, TX 77710, USA
002852698 700__ $$aConnors, M.E.$$uGeorgia State U.$$vGeorgia State University, Atlanta, GA 30303, USA
002852698 700__ $$aConstantinou, M.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aCosyn, W.$$uFlorida Intl. U.$$vFlorida International University, Miami, FL 33199, USA
002852698 700__ $$aCovrig Dusa, S.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aCruz-Torres, R.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aD'Alesio, U.$$uCagliari U.$$uINFN, Cagliari$$vUniversità degli Studi di Cagliari, I-09042 Monserrato, Italy$$vIstituto Nazionale di Fisica Nucleare – Sezione di Cagliari, I-09042 Monserrato, Italy
002852698 700__ $$ada Silva, C.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aDavoudi, Z.$$uMaryland U.$$vUniversity of Maryland, College Park, MD 20742, USA
002852698 700__ $$aDean, C.T.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aDean, D.J.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aDemarteau, M.$$uOak Ridge$$vOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
002852698 700__ $$aDeshpande, A.$$uSUNY, Stony Brook$$uStony Brook U.$$uBrookhaven$$vStony Brook University, Stony Brook, NY 11794, USA$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aDetmold, W.$$uMIT, LNS$$uMIT$$uIAIFI, Cambridge$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA$$vThe NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA
002852698 700__ $$aDeur, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aDevkota, B.R.$$uMississippi State U.$$vMississippi State University, Mississippi State, MS 39762, USA
002852698 700__ $$aDhital, S.$$uHampton U.$$uJefferson Lab$$vHampton University, Hampton, VA 23669, USA
002852698 700__ $$aDiefenthaler, M.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aDobbs, S.$$uFlorida State U.$$vFlorida State University, Tallahassee, FL 32306, USA
002852698 700__ $$aDöring, M.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aDong, X.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aDotel, R.$$uConnecticut U.$$vUniversity of Connecticut, Storrs, CT 06269, USA
002852698 700__ $$aDow, K.A.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aDownie, E.J.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aDrachenberg, J.L.$$uAbilene Christian U.$$vAbilene Christian University, Abilene, TX 79699, USA
002852698 700__ $$aDumitru, A.$$uBaruch Coll.$$vBaruch College, City University of New York, New York, NY 10010, USA
002852698 700__ $$aDunlop, J.C.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aDupre, R.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002852698 700__ $$aDurham, J.M.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aDutta, D.$$uMississippi State U.$$vMississippi State University, Mississippi State, MS 39762, USA
002852698 700__ $$aEdwards, R.G.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aEhlers, R.J.$$uLBL, Berkeley$$uUC, Berkeley (main)$$uLBNL, Berkeley$$uUC, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA$$vUniversity of California Berkeley, Berkeley, CA 94720, USA
002852698 700__ $$aEl Fassi, L.$$uMississippi State U.$$vMississippi State University, Mississippi State, MS 39762, USA
002852698 700__ $$aElaasar, M.$$uTulane U.$$uLoyola U., New Orleans$$vSouthern University at New Orleans, New Orleans, LA 70126, USA
002852698 700__ $$aElouadrhiri, L.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aEngelhardt, M.$$uNew Mexico State U.$$vNew Mexico State University, Las Cruces, NM 88003, USA
002852698 700__ $$aEnt, R.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aEsumi, S.$$uTsukuba U.$$vUniversity of Tsukuba, Tomonaga Center for the History of the Universe, Tsukuba, Ibaraki 305-8571, Japan
002852698 700__ $$aEvdokimov, O.$$uIllinois U., Chicago$$vUniversity of Illinois at Chicago, Chicago, IL 60607, USA
002852698 700__ $$aEyser, O.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aFanelli, C.$$uWilliam-Mary Coll.$$uJefferson Lab$$vWilliam and Mary, Williamsburg, VA 23185, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aFatemi, R.$$uKentucky U.$$vUniversity of Kentucky, Lexington, KY 40502, USA
002852698 700__ $$aFernando, I.P.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aFlor, F.A.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aFomin, N.$$uTennessee U.$$vUniversity of Tennessee, Knoxville, TN 37996, USA
002852698 700__ $$aFrawley, A.D.$$uFlorida State U.$$vFlorida State University, Tallahassee, FL 32306, USA
002852698 700__ $$aFrederico, T.$$uSao Paulo, Inst. Tech. Aeronautics$$uUnlisted, BR$$vInstituto Tecnológico de Aeronáutica, 12.228-900 São José dos Campos, Brazil
002852698 700__ $$aFries, R.J.$$uTexas A-M$$vTexas A&M University, College Station, TX 77843, USA
002852698 700__ $$aGal, C.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aGamage, B.R.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aGamberg, L.$$uPenn State U., Berks-Lehigh Valley$$vPenn State Berks, Reading, PA 19610, USA
002852698 700__ $$aGao, H.$$uBrookhaven$$uDuke U.$$vBrookhaven National Laboratory, Upton, NY 11973, USA$$vDuke University, Durham, NC 27708, USA
002852698 700__ $$aGaskell, D.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aGeurts, F.$$uRice U.$$vRice University, Houston, TX 77005, USA
002852698 700__ $$aGhandilyan, Y.$$uCatholic U.$$vThe Catholic University of America, Washington, DC 20064, USA
002852698 700__ $$aGhimire, N.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aGilman, R.$$uRutgers U., Piscataway$$vRutgers University, Piscataway, NJ 08854, USA
002852698 700__ $$aGleason, C.$$uUnion Coll.$$vUnion College, Schenectady, NY 12308, USA
002852698 700__ $$aGnanvo, K.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aGothe, R.W.$$uSouth Carolina U.$$vUniversity of South Carolina, Columbia, SC 29208, USA
002852698 700__ $$aGreene, S.V.$$uVanderbilt U.$$vVanderbilt University, Nashville, TN 37235, USA
002852698 700__ $$aGrießhammer, H.W.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aGrossberndt, S.K.$$uCity Coll., N.Y.$$uCUNY, CCNY$$uBaruch Coll.$$vGraduate Center, City University of New York, New York, NY 10016, USA$$vBaruch College, City University of New York, New York, NY 10010, USA
002852698 700__ $$aGrube, B.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aHackett, D.C.$$uMIT, LNS$$uMIT$$uIAIFI, Cambridge$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA$$vThe NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA
002852698 700__ $$aHague, T.J.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aHakobyan, H.$$uSanta Maria U., Valparaiso$$vUniversidad Tecnica Federico Santa Maria, Valparaiso, Chile
002852698 700__ $$aHansen, J.-O.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aHatta, Y.$$uBrookhaven$$uRIKEN BNL$$vBrookhaven National Laboratory, Upton, NY 11973, USA$$vRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aHattawy, M.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aHavener, L.B.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aHen, O.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aHenry, W.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aHiginbotham, D.W.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aHobbs, T.J.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aHodges, A.M.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aHolmstrom, T.$$uVirginia U.$$uHarvard Medical School$$vLongwood University, Farmville, VA 23909, USA
002852698 700__ $$aHong, B.$$uKorea U.$$vKorea University, Seoul 02841, Korea
002852698 700__ $$aHorn, T.$$uCatholic U.$$uJefferson Lab$$vThe Catholic University of America, Washington, DC 20064, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aHowell, C.R.$$uDuke U.$$uTUNL, Durham$$uNorth Carolina U.$$vDuke University, Durham, NC 27708, USA$$vTriangle Universities Nuclear Laboratory, Durham, NC 27708, USA
002852698 700__ $$aHuang, H.Z.$$uCal State, L.A.$$vUniversity of California Los Angeles, Los Angeles, CA 90095, USA
002852698 700__ $$aHuang, M.$$uIowa State U.$$vIowa State University, Ames, IA 50011, USA
002852698 700__ $$aHuang, S.$$uSUNY, Stony Brook$$uStony Brook U.$$vStony Brook University, Stony Brook, NY 11794, USA
002852698 700__ $$aHuber, G.M.$$uRegina U.$$vUniversity of Regina, Regina, Saskatchewan S4S0A2, Canada
002852698 700__ $$aHyde, C.E.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aIsupov, E.L.$$uSternberg Astron. Inst.$$vLomonosov Moscow State University, 119899 Moscow, Russia
002852698 700__ $$aJacobs, P.M.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aJalilian-Marian, J.$$uBaruch Coll.$$uCity Coll., N.Y.$$uCUNY, CCNY$$vBaruch College, City University of New York, New York, NY 10010, USA$$vGraduate Center, City University of New York, New York, NY 10016, USA
002852698 700__ $$aJentsch, A.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aJheng, H.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aJi, C.-R.$$uNorth Carolina State U.$$vNorth Carolina State University, Raleigh, NC 27695, USA
002852698 700__ $$aJi, X.$$uMaryland U.$$vUniversity of Maryland, College Park, MD 20742, USA
002852698 700__ $$aJia, J.$$uSUNY, Stony Brook$$uStony Brook U.$$uBrookhaven$$vStony Brook University, Stony Brook, NY 11794, USA$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aJones, D.C.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aJones, M.K.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aJoosten, S.$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aKalantarians, N.$$uVirginia Commonwealth U.$$vVirginia Union University, Richmond, VA 23220, USA
002852698 700__ $$aKalicy, G.$$uCatholic U.$$vThe Catholic University of America, Washington, DC 20064, USA
002852698 700__ $$aKang, Z.B.$$uCal State, L.A.$$vUniversity of California Los Angeles, Los Angeles, CA 90095, USA
002852698 700__ $$aKarthein, J.M.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aKeller, D.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aKeppel, C.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aKhachatryan, V.$$uIndiana U.$$vIndiana University, Bloomington, IN 47405, USA
002852698 700__ $$aKharzeev, D.E.$$uSUNY, Stony Brook$$uStony Brook U.$$uBrookhaven$$vStony Brook University, Stony Brook, NY 11794, USA$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aKim, H.$$uChonnam Natl. U.$$vChonnam National University, Gwangju 61186, Korea
002852698 700__ $$aKim, M.$$uUC, Berkeley (main)$$uUC, Berkeley$$vUniversity of California Berkeley, Berkeley, CA 94720, USA
002852698 700__ $$aKim, Y.$$uSejong U.$$vSejong University, Seoul 05006, Korea
002852698 700__ $$aKing, P.M.$$uOhio U.$$uOhio U., Athens$$vOhio University, Athens, OH 45701, USA
002852698 700__ $$aKinney, E.$$uColorado U.$$vUniversity of Colorado Boulder, Boulder, CO 80309, USA
002852698 700__ $$aKlein, S.R.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aKo, H.S.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aKoch, V.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aKohl, M.$$uHampton U.$$uJefferson Lab$$vHampton University, Hampton, VA 23669, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aKovchegov, Y.V.$$uOhio State U.$$vThe Ohio State University, Columbus, OH 43210, USA
002852698 700__ $$aKrintiras, G.K.$$uKansas U.$$vUniversity of Kansas, Lawrence, KS 66045, USA
002852698 700__ $$aKubarovsky, V.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aKuhn, S.E.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aKumar, K.S.$$uMassachusetts U., Amherst$$vUniversity of Massachusetts, Amherst, MA 01003, USA
002852698 700__ $$aKutz, T.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aLajoie, J.G.$$uIowa State U.$$uOak Ridge$$vIowa State University, Ames, IA 50011, USA$$vOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
002852698 700__ $$aLauret, J.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aLavrukhin, I.$$uMichigan U.$$vUniversity of Michigan, Ann Arbor, MI 48109, USA
002852698 700__ $$aLawrence, D.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aLee, J.H.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aLee, K.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aLee, S.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aLee, Y.-J.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aLi, S.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aLi, W.$$uRice U.$$vRice University, Houston, TX 77005, USA
002852698 700__ $$aLi, Xiaqing$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aLi, Xuan$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aLiao, J.$$uIndiana U.$$vIndiana University, Bloomington, IN 47405, USA
002852698 700__ $$aLin, H.-W.$$uMichigan State U.$$vMichigan State University, East Lansing, MI 48824, USA
002852698 700__ $$aLisa, M.A.$$uOhio State U.$$vThe Ohio State University, Columbus, OH 43210, USA
002852698 700__ $$aLiu, K.-F.$$uKentucky U.$$uLBL, Berkeley$$uLBNL, Berkeley$$vUniversity of Kentucky, Lexington, KY 40502, USA$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aLiu, M.X.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aLiu, T.$$uShandong U.$$vShandong University, Qingdao, Shandong 266237, China
002852698 700__ $$aLiuti, S.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aLiyanage, N.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aLlope, W.J.$$uWayne State U., Detroit$$uWayne State U.$$vWayne State University, Detroit, MI 48201, USA
002852698 700__ $$aLoizides, C.$$uOak Ridge$$vOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
002852698 700__ $$aLongo, R.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aLorenzon, W.$$uMichigan U.$$vUniversity of Michigan, Ann Arbor, MI 48109, USA
002852698 700__ $$aLunkenheimer, S.$$uMichigan U.$$vUniversity of Michigan, Ann Arbor, MI 48109, USA
002852698 700__ $$aLuo, X.$$uHua-Zhong Normal U.$$vCentral China Normal University, Wuhan 430079, China
002852698 700__ $$aMa, R.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aMcKinnon, B.$$uGlasgow U.$$vUniversity of Glasgow, Glasgow G12 8QQ, United Kingdom
002852698 700__ $$aMeekins, D.G.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aMehtar-Tani, Y.$$uBrookhaven$$uRIKEN BNL$$vBrookhaven National Laboratory, Upton, NY 11973, USA$$vRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aMelnitchouk, W.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aMetz, A.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aMeyer, C.A.$$uCarnegie Mellon U.$$vCarnegie Mellon University, Pittsburgh, PA 15213, USA
002852698 700__ $$aMeziani, Z.-E.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aMichaels, R.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aMichel, J.K.L.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aMilner, R.G.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aMkrtchyan, H.$$uYerevan Phys. Inst.$$vA.I. Alikhanyan National Science Laboratory, Yerevan Physics Institute, Yerevan 0036, Armenia
002852698 700__ $$aMohanmurthy, P.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aMohanty, B.$$uNISER, Jatni$$uHBNI, Mumbai$$vNational Institute of Science Education and Research, Jatni-752050, India
002852698 700__ $$aMokeev, V.I.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aMoon, D.H.$$uChonnam Natl. U.$$vChonnam National University, Gwangju 61186, Korea
002852698 700__ $$aMooney, I.A.$$uYale U.$$uYale U., Math. Dept.$$uBrookhaven$$vYale University, New Haven, CT 06520, USA$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aMorningstar, C.$$uCarnegie Mellon U.$$vCarnegie Mellon University, Pittsburgh, PA 15213, USA
002852698 700__ $$aMorrison, D.P.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aMüller, B.$$uDuke U.$$vDuke University, Durham, NC 27708, USA
002852698 700__ $$aMukherjee, S.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aMulligan, J.$$uUC, Berkeley (main)$$uLBL, Berkeley$$uUC, Berkeley$$uLBNL, Berkeley$$vUniversity of California Berkeley, Berkeley, CA 94720, USA$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aMunoz Camacho, C.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002852698 700__ $$aMurillo Quijada, J.A.$$uSonora U.$$vUniversidad de Sonora, 83000 Hermosillo, Sonora, Mexico
002852698 700__ $$aMurray, M.J.$$uKansas U.$$vUniversity of Kansas, Lawrence, KS 66045, USA
002852698 700__ $$aNadeeshani, S.A.$$uMississippi State U.$$vMississippi State University, Mississippi State, MS 39762, USA
002852698 700__ $$aNadel-Turonski, P.$$uSUNY, Stony Brook$$uStony Brook U.$$vStony Brook University, Stony Brook, NY 11794, USA
002852698 700__ $$aNam, J.D.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aNattrass, C.E.$$uTennessee U.$$vUniversity of Tennessee, Knoxville, TN 37996, USA
002852698 700__ $$aNijs, G.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aNoronha, J.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aNoronha-Hostler, J.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aNovitzky, N.$$uOak Ridge$$vOak Ridge National Laboratory, Oak Ridge, TN 37831, USA
002852698 700__ $$aNycz, M.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aOlness, F.I.$$uSouthern Methodist U.$$uSouthern Methodist U. (main)$$vSouthern Methodist University, Dallas, TX 75275, USA
002852698 700__ $$aOsborn, J.D.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aPak, R.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aPandey, B.$$uKentucky U.$$vVirginia Military Institute, Lexington, VA 24450, USA
002852698 700__ $$aPaolone, M.$$uNew Mexico State U.$$vNew Mexico State University, Las Cruces, NM 88003, USA
002852698 700__ $$aPapandreou, Z.$$uRegina U.$$vUniversity of Regina, Regina, Saskatchewan S4S0A2, Canada
002852698 700__ $$aPaquet, J.-F.$$uVanderbilt U.$$vVanderbilt University, Nashville, TN 37235, USA
002852698 700__ $$aPark, S.$$uMississippi State U.$$uSUNY, Stony Brook$$vMississippi State University, Mississippi State, MS 39762, USA$$vCenter for Frontiers in Nuclear Science, Stony Brook, NY 11794, USA
002852698 700__ $$aPaschke, K.D.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aPasquini, B.$$uPavia U.$$uINFN, Pavia$$vUniversità degli Studi di Pavia, I-27100 Pavia, Italy$$vIstituto Nazionale di Fisica Nucleare – Sezione di Pavia, I-27100 Pavia, Italy
002852698 700__ $$aPasyuk, E.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aPatel, T.$$uHampton U.$$uJefferson Lab$$vHampton University, Hampton, VA 23669, USA
002852698 700__ $$aPatton, A.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aPaudel, C.$$uFlorida Intl. U.$$vFlorida International University, Miami, FL 33199, USA
002852698 700__ $$aPeng, C.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aPeng, J.C.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aPereira Da Costa, H.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aPerepelitsa, D.V.$$uColorado U.$$vUniversity of Colorado Boulder, Boulder, CO 80309, USA
002852698 700__ $$aPeters, M.J.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aPetreczky, P.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aPisarski, R.D.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aPitonyak, D.$$uLebanon Valley Coll.$$uUnlisted, US, PA$$vLebanon Valley College, Annville, PA 17003, USA
002852698 700__ $$aPloskon, M.A.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aPosik, M.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aPoudel, J.$$uJefferson Lab$$uOld Dominion U.$$uOld Dominion U. (main)$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aPradhan, R.$$uIndian Inst. Tech., Madras$$vIndian Institute Of Technology, Madras, Chennai, Tamilnadu, 600036, India
002852698 700__ $$aProkudin, A.$$uPenn State U., Berks-Lehigh Valley$$uJefferson Lab$$vPenn State Berks, Reading, PA 19610, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aPruneau, C.A.$$uWayne State U., Detroit$$uWayne State U.$$vWayne State University, Detroit, MI 48201, USA
002852698 700__ $$aPuckett, A.J.R.$$uConnecticut U.$$vUniversity of Connecticut, Storrs, CT 06269, USA
002852698 700__ $$aPujahari, P.$$uIndian Inst. Tech., Madras$$vIndian Institute Of Technology, Madras, Chennai, Tamilnadu, 600036, India
002852698 700__ $$aPutschke, J.$$uWayne State U., Detroit$$uWayne State U.$$vWayne State University, Detroit, MI 48201, USA
002852698 700__ $$aPybus, J.R.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aQiu, J.-W.$$uJefferson Lab$$uWilliam-Mary Coll.$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA$$vWilliam and Mary, Williamsburg, VA 23185, USA
002852698 700__ $$aRajagopal, K.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aRatti, C.$$uHouston U.$$vUniversity of Houston, Houston, TX 77204, USA
002852698 700__ $$aRead, K.F.$$uOak Ridge$$uTennessee U.$$vOak Ridge National Laboratory, Oak Ridge, TN 37831, USA$$vUniversity of Tennessee, Knoxville, TN 37996, USA
002852698 700__ $$aReed, R.$$uLehigh U.$$vLehigh University, Bethlehem, PA 18015, USA
002852698 700__ $$aRichards, D.G.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aRiedl, C.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aRinger, F.$$uOld Dominion U.$$uOld Dominion U. (main)$$uJefferson Lab$$vOld Dominion University, Norfolk, VA 23529, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aRinn, T.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aRittenhouse West, J.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aRoche, J.$$uOhio U.$$uOhio U., Athens$$vOhio University, Athens, OH 45701, USA
002852698 700__ $$aRodas, A.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aRoland, G.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aRomero-López, F.$$uMIT, LNS$$uMIT$$uIAIFI, Cambridge$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA$$vThe NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA
002852698 700__ $$aRossi, P.$$uJefferson Lab$$uINFN, Rome$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA$$vIstituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Frascati, 00044 Frascati, Italy
002852698 700__ $$aRostomyan, T.$$uPSI, Villigen$$vPaul Scherrer Institut, Villigen, CH-5232, Switzerland
002852698 700__ $$aRuan, L.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aRuimi, O.M.$$uHebrew U.$$vHebrew University of Jerusalem, Jerusalem 9190401, Israel
002852698 700__ $$aSaha, N.R.$$uIndian Inst. Tech., Madras$$vIndian Institute Of Technology, Madras, Chennai, Tamilnadu, 600036, India
002852698 700__ $$aSahoo, N.R.$$uShandong U.$$vShandong University, Qingdao, Shandong 266237, China
002852698 700__ $$aSakaguchi, T.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aSalazar, F.$$uCal State, L.A.$$uLBL, Berkeley$$uUC, Berkeley (main)$$uLBNL, Berkeley$$uUC, Berkeley$$vUniversity of California Los Angeles, Los Angeles, CA 90095, USA$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA$$vUniversity of California Berkeley, Berkeley, CA 94720, USA
002852698 700__ $$aSalgado, C.W.$$uNorfolk State U.$$uJefferson Lab$$uVirginia Tech.$$vNorfolk State University, Norfolk, VA 23540, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aSalmè, G.$$uINFN, Rome$$uRome U.$$vIstituto Nazionale di Fisica Nucleare – Sezione di Roma, 00185 Rome, Italy
002852698 700__ $$aSalur, S.$$uRutgers U., Piscataway$$vRutgers University, Piscataway, NJ 08854, USA
002852698 700__ $$aSantiesteban, S.N.$$uNew Hampshire U.$$uDurham U.$$vUniversity of New Hampshire, NH 03824, USA
002852698 700__ $$aSargsian, M.M.$$uFlorida Intl. U.$$vFlorida International University, Miami, FL 33199, USA
002852698 700__ $$aSarsour, M.$$uGeorgia State U.$$vGeorgia State University, Atlanta, GA 30303, USA
002852698 700__ $$aSato, N.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aSatogata, T.$$uJefferson Lab$$uOld Dominion U.$$uOld Dominion U. (main)$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aSawada, S.$$uKEK, Tsukuba$$vHigh Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
002852698 700__ $$aSchäfer, T.$$uNorth Carolina State U.$$vNorth Carolina State University, Raleigh, NC 27695, USA
002852698 700__ $$aScheihing-Hitschfeld, B.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aSchenke, B.$$mbschenke@bnl.gov$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aSchindler, S.T.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aSchmidt, A.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aSeidl, R.$$uWako, RIKEN$$uRIKEN BNL$$vRIKEN, Wako, Saitama, 351-0198, Japan$$vRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aShabestari, M.H.$$uYerevan Phys. Inst.$$uFlorida State U.$$uFlorida Inst. Tech.$$vUniversity of West Florida, Pensacola, FL 32514, USA
002852698 700__ $$aShanahan, P.E.$$uMIT, LNS$$uMIT$$uIAIFI, Cambridge$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA$$vThe NSF AI Institute for Artificial Intelligence and Fundamental Interactions, Cambridge, MA 02139, USA
002852698 700__ $$aShen, C.$$uWayne State U., Detroit$$uWayne State U.$$uRIKEN BNL$$vWayne State University, Detroit, MI 48201, USA$$vRIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aSheng, T.-A.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aShepherd, M.R.$$uIndiana U.$$vIndiana University, Bloomington, IN 47405, USA
002852698 700__ $$aSickles, A.M.$$msickles@illinois.edu$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aSievert, M.D.$$uNew Mexico State U.$$vNew Mexico State University, Las Cruces, NM 88003, USA
002852698 700__ $$aSmith, K.L.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aSong, Y.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aSorensen, A.$$uWashington U., Seattle$$vUniversity of Washington, Seattle, WA 98195, USA
002852698 700__ $$aSouder, P.A.$$uSyracuse U.$$vSyracuse University, Syracuse, NY 13244, USA
002852698 700__ $$aSparveris, N.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aSrednyak, S.$$uDuke U.$$vDuke University, Durham, NC 27708, USA
002852698 700__ $$aStahl Leiton, A.G.$$uCERN$$vCERN, European Organization for Nuclear Research, Geneva, Switzerland
002852698 700__ $$aStasto, A.M.$$uPenn State U.$$vPennsylvania State University, University Park, PA 16802, USA
002852698 700__ $$aSteinberg, P.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aStepanyan, S.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aStephanov, M.$$uIllinois U., Chicago$$vUniversity of Illinois at Chicago, Chicago, IL 60607, USA
002852698 700__ $$aStevens, J.R.$$uWilliam-Mary Coll.$$vWilliam and Mary, Williamsburg, VA 23185, USA
002852698 700__ $$aStewart, D.J.$$uWayne State U., Detroit$$uWayne State U.$$vWayne State University, Detroit, MI 48201, USA
002852698 700__ $$aStewart, I.W.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aStojanovic, M.$$uPurdue U.$$uPurdue U., Chem. Dept.$$vPurdue University, West Lafayette, IN 47907, USA
002852698 700__ $$aStrakovsky, I.$$uGeorge Washington U.$$uJefferson Lab$$vGeorge Washington University, Washington, DC 20052, USA
002852698 700__ $$aStrauch, S.$$uSouth Carolina U.$$vUniversity of South Carolina, Columbia, SC 29208, USA
002852698 700__ $$aStrickland, M.$$uKent State U.$$uHampton U.$$vKent State University, Kent, OH 44242, USA
002852698 700__ $$aSunar Cerci, D.$$uAdiyaman U.$$uIstanbul U.$$vAdiyaman University, Adiyaman 02040, Turkey$$vIstanbul University, Istanbul, Turkey
002852698 700__ $$aSuresh, M.$$uHampton U.$$uJefferson Lab$$vHampton University, Hampton, VA 23669, USA
002852698 700__ $$aSurrow, B.$$uPennsylvania U.$$uTemple U.$$vTemple University, Philadelphia, PA 19122, USA
002852698 700__ $$aSyritsyn, S.$$uSUNY, Stony Brook$$uStony Brook U.$$vStony Brook University, Stony Brook, NY 11794, USA
002852698 700__ $$aSzczepaniak, A.P.$$uIndiana U.$$uJefferson Lab$$vIndiana University, Bloomington, IN 47405, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aTadepalli, A.S.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aTang, A.H.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aTapia Takaki, J.D.$$uKansas U.$$vUniversity of Kansas, Lawrence, KS 66045, USA
002852698 700__ $$aTarnowsky, T.J.$$uMichigan State U.$$uLos Alamos$$vMichigan State University, East Lansing, MI 48824, USA$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aTawfik, A.N.$$uUnlisted, EG$$vFuture University in Egypt, Fifth Settlement, 11835 New Cairo, Egypt
002852698 700__ $$aTaylor, M.I.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aTennant, C.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aThiel, A.$$uBonn U., HISKP$$uBonn U.$$vHelmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, 53115 Bonn, Germany
002852698 700__ $$aThomas, D.$$uTexas U.$$vThe University of Texas at Austin, Austin, TX 78712, USA
002852698 700__ $$aTian, Y.$$uSyracuse U.$$vSyracuse University, Syracuse, NY 13244, USA
002852698 700__ $$aTimmins, A.R.$$uHouston U.$$vUniversity of Houston, Houston, TX 77204, USA
002852698 700__ $$aTribedy, P.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aTu, Z.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aTuo, S.$$uVanderbilt U.$$vVanderbilt University, Nashville, TN 37235, USA
002852698 700__ $$aUllrich, T.$$uBrookhaven$$uYale U.$$uYale U., Math. Dept.$$vBrookhaven National Laboratory, Upton, NY 11973, USA$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aUmaka, E.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aUpton, D.W.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aVary, J.P.$$uIowa State U.$$vIowa State University, Ames, IA 50011, USA
002852698 700__ $$aVelkovska, J.$$uVanderbilt U.$$vVanderbilt University, Nashville, TN 37235, USA
002852698 700__ $$aVenugopalan, R.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aVijayakumar, A.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aVitev, I.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aVogelsang, W.$$uTubingen U.$$vUniversity of Tübingen, Inst. for Theoretical Physics, 72076 Tübingen, Germany
002852698 700__ $$aVogt, R.$$uLLNL, Livermore$$uUC, Davis$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Livermore National Laboratory, Livermore, CA 94551, USA$$vUniversity of California at Davis, Davis, CA 95616, USA$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aVossen, A.$$uDuke U.$$uJefferson Lab$$vDuke University, Durham, NC 27708, USA$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aVoutier, E.$$uIJCLab, Orsay$$vUniversité Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
002852698 700__ $$aVovchenko, V.$$uHouston U.$$vUniversity of Houston, Houston, TX 77204, USA
002852698 700__ $$aWalker-Loud, A.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aWang, F.$$uPurdue U.$$uPurdue U., Chem. Dept.$$vPurdue University, West Lafayette, IN 47907, USA
002852698 700__ $$aWang, J.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aWang, X.$$uIllinois U., Urbana$$uIllinois U., Urbana (main)$$vUniversity of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
002852698 700__ $$aWang, X.-N.$$uLBL, Berkeley$$uUC, Berkeley (main)$$uLBNL, Berkeley$$uUC, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA$$vUniversity of California Berkeley, Berkeley, CA 94720, USA
002852698 700__ $$aWeinstein, L.B.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aWenaus, T.J.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aWeyhmiller, S.$$uYale U.$$uYale U., Math. Dept.$$vYale University, New Haven, CT 06520, USA
002852698 700__ $$aWissink, S.W.$$uIndiana U.$$vIndiana University, Bloomington, IN 47405, USA
002852698 700__ $$aWojtsekhowski, B.$$uJefferson Lab$$vThomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
002852698 700__ $$aWong, C.P.$$uLos Alamos$$vLos Alamos National Laboratory, Los Alamos, NM 87545, USA
002852698 700__ $$aWood, M.H.$$uSUNY, Buffalo$$uCanisius Coll., Buffalo$$vCanisius College, Buffalo, NY 14208, USA
002852698 700__ $$aWunderlich, Y.$$uBonn U., HISKP$$uBonn U.$$vHelmholtz-Institut für Strahlen- und Kernphysik, University of Bonn, 53115 Bonn, Germany
002852698 700__ $$aWyslouch, B.$$uMIT, LNS$$uMIT$$vMassachusetts Institute of Technology, Cambridge, MA 02139, USA
002852698 700__ $$aXiao, B.W.$$uHong Kong, Chinese U.$$vThe Chinese University of Hong Kong, Shenzhen 518172, China
002852698 700__ $$aXie, W.$$uPurdue U.$$uPurdue U., Chem. Dept.$$vPurdue University, West Lafayette, IN 47907, USA
002852698 700__ $$aXiong, W.$$uShandong U.$$vShandong University, Qingdao, Shandong 266237, China
002852698 700__ $$aXu, N.$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aXu, Q.H.$$uShandong U.$$vShandong University, Qingdao, Shandong 266237, China
002852698 700__ $$aXu, Z.$$uBrookhaven$$vBrookhaven National Laboratory, Upton, NY 11973, USA
002852698 700__ $$aYaari, D.$$uHebrew U.$$vHebrew University of Jerusalem, Jerusalem 9190401, Israel
002852698 700__ $$aYao, X.$$uWashington U., Seattle$$vUniversity of Washington, Seattle, WA 98195, USA
002852698 700__ $$aYe, Z.$$uIllinois U., Chicago$$vUniversity of Illinois at Chicago, Chicago, IL 60607, USA
002852698 700__ $$aYe, Z.H.$$uTsinghua U., Beijing$$uHarvard U., Dept. Math.$$vTsinghua University, Haidian, Beijing 100084, China
002852698 700__ $$aYero, C.$$uOld Dominion U.$$uOld Dominion U. (main)$$vOld Dominion University, Norfolk, VA 23529, USA
002852698 700__ $$aYuan, F.$$mfyuan@lbl.gov$$uLBL, Berkeley$$uLBNL, Berkeley$$vLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
002852698 700__ $$aZajc, W.A.$$uColumbia U.$$vColumbia University, New York, NY 10027, USA
002852698 700__ $$aZhang, C.$$uSUNY, Stony Brook$$uStony Brook U.$$vStony Brook University, Stony Brook, NY 11794, USA
002852698 700__ $$aZhang, J.$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aZhao, F.$$uCal State, L.A.$$vUniversity of California Los Angeles, Los Angeles, CA 90095, USA
002852698 700__ $$aZhao, Y.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 700__ $$aZhao, Z.W.$$uDuke U.$$vDuke University, Durham, NC 27708, USA
002852698 700__ $$aZheng, X.$$mxz5y@virginia.edu$$uVirginia U. (main)$$uVirginia U.$$vUniversity of Virginia, Charlottesville, VA 22904, USA
002852698 700__ $$aZhou, J.$$uDuke U.$$vDuke University, Durham, NC 27708, USA
002852698 700__ $$aZurek, M.$$uArgonne$$uArgonne, PHY$$vArgonne National Laboratory, Lemont, IL 60439, USA
002852698 773__ $$c122874$$mpublication$$pNucl. Phys. A$$v1047$$xNucl.Phys.A 1047 (2024) 122874$$y2024
002852698 8564_ $$uhttps://misportal.jlab.org/ul/publications/view_pub.cfm?pub_id=18451$$yJLab Document Server
002852698 8564_ $$82441154$$s40876$$uhttp://cds.cern.ch/record/2852698/files/PbPbfragratio.png$$y00007 Left: Ratio of the jet fragmentation functions in 0--10\% central \pbpb\ collisions to those in \pp\ collisions for three jet $p_T^{\rm jet}$ as a function of the $p_T$ of the particles in the jet. From Ref.~\cite{ATLAS:2018bvp}. Right: Ratio of the jet \RAA\ in 0--10\% central \pbpb\ collisions for jets of radius $\textrm{R}$ to the \RAA\ of ${\rm R} = 0.2$ jets as a function of $\textrm{R}$ for three $p_T^{\rm jet}$. Comparisons to a variety of theoretical calculations are shown. Figure from Ref.~\cite{CMS:2021vui}. Theory results from three models~\cite{Schenke:2009gb,Hulcher:2017cpt,He:2018xjv}.
002852698 8564_ $$82441155$$s185910$$uhttp://cds.cern.ch/record/2852698/files/qhat.png$$y00009 Four extractions of the strength of the jet quenching parameter $\qhat / T^3$ as a function of the temperature $T$ of the QGP. The figure is from Ref.~\cite{Xie:2022ght} and the calculations are from Refs.~\cite{JETSCAPE:2021ehl,Ke:2020clc,Xie:2022ght,JET:2013cls}.
002852698 8564_ $$82441156$$s510737$$uhttp://cds.cern.ch/record/2852698/files/FF_CREX_PREX.png$$y00078 Left: $\epb$ weak and baryon densities from the combined PREX datasets, with uncertainties shaded. The charge density is also shown~\cite{PREX:2021umo}. Right: Difference between the charge and weak form factors of $\eca$ (CREX) versus that of $\epb$ (PREX-2) at their respective momentum transfers. The blue (red) data point shows the PREX-2 (CREX) measurements. The ellipses are joint PREX-2 and CREX 67\% and 90\% probability contours. The gray circles (magenta diamonds) are a range of relativistic (non-relativistic) density functional models~\cite{CREX:2022kgg}.
002852698 8564_ $$82441157$$s46560$$uhttp://cds.cern.ch/record/2852698/files/pionkaonff.png$$y00061 The left (right) panels show calculations, measurements, and projected uncertainties of recent measurements of the pion (kaon) form factors.
002852698 8564_ $$82441158$$s95558$$uhttp://cds.cern.ch/record/2852698/files/dbaroverubar.png$$y00028 Left: The $F_2^n/F_2^p $ ratio plotted versus the Bjorken $x$ from the JLab MARATHON experiment~\cite{JeffersonLabHallATritium:2021usd}. Right: A plot of $\bar d(x)/\bar u(x)$ extracted from the measured SeaQuest $\sigma^{pd} (x)/2\sigma^{pp}(x)$ cross section ratio~\cite{SeaQuest:2021zxb}, compared with data from E866/NuSea~\cite{NuSea:2001idv} and CT18NLO parton distributions.
002852698 8564_ $$82441159$$s183782$$uhttp://cds.cern.ch/record/2852698/files/EMCSRC2.png$$y00040 Left: Measured structure function ratio for different nuclei relative to deuterium~\cite{CLAS:2019vsb}. Right: The extracted universal modification function of nucleons in SRC pairs from a global data analysis~\cite{Segarra:2019gbp}.
002852698 8564_ $$82441160$$s49988$$uhttp://cds.cern.ch/record/2852698/files/D_HQ_102022.png$$y00014 Left: $D$ meson \vtwo\ for \pbpb\ \cite{ALICE:2018lyv,CMS:2017vhp} and \auau\ ~\cite{Adamczyk:2017xur} collisions. Center: The nuclear modification factor of $D$-mesons for \pbpb\ \cite{ALICE:2018lyv,CMS:2017qjw} \auau\ ~\cite{Adam:2018inb} collisions. Right: The temperature dependence of the charm quark spatial diffusion coefficient, $2\pi T$\Ds~\cite{Dong:2019byy}.
002852698 8564_ $$82441161$$s68151$$uhttp://cds.cern.ch/record/2852698/files/plaquette-simulation.png$$y00046 The left side depicts the structure of the plaquette operator in the pure SU(3) lattice gauge theory upon integration of local quantum numbers for a one-dimensional string of plaquettes (top) and for a two-dimensional sheet of plaquettes (bottom). The blue squares indicate the active quantum registers while the green circles denote the neighboring controls. The right side shows a real-time simulation of the dynamics of the vacuum in terms of fluctuations in the electric energy of a two-plaquette system in the (truncated) global color parity basis, implemented on the IBM Athens quantum processor. The figure is adopted from Refs.~\cite{Ciavarella:2021nmj,Ciavarella:2022zhe}.
002852698 8564_ $$82441162$$s50341$$uhttp://cds.cern.ch/record/2852698/files/v3-sonic-shen-mstverr.png$$y00017 Measurement of \vtwo\ (top) and \vthree\ (bottom) for charged particles in \pAu, \dAu, and \HeAu\ collisions as a function of \pt. Calculations from two hydrodynamic models \cite{Shen:2016zpp,Habich:2014jna} and a CGC based model \cite{Mace:2018vwq} are shown. Figure from Ref.~\cite{PHENIX:2018lia}.
002852698 8564_ $$82441163$$s185705$$uhttp://cds.cern.ch/record/2852698/files/2pcorr_CMSPhase2.png$$y00048 Left: ALICE projections for PID $v_2$ in 10--20\% centrality PbPb collisions for an integrated luminosity of 10~nb$^{-1}$ at HL-LHC~\cite{ALICE-PUBLIC-2019-001,Citron:2018lsq}. Right: CMS projection of long-range two-particle correlations with $\Delta\eta$ up to 8 units from Phase-2 upgrades for the HL-LHC~\cite{CMS-DP-2021-037}.
002852698 8564_ $$82441164$$s44762$$uhttp://cds.cern.ch/record/2852698/files/plot2_5Sept_edit.png$$y00053 Collision rates as a function of $\snn$ for collider experiments in red, and fixed-target (FXT) experiments in blue. Comparing to the collider experiments, more than four orders of magnitude improvement in collision rates can be achieved with the future CBM experiment at FAIR~\cite{Galatyuk:2019lcf,Fukushima:2020yzx}.
002852698 8564_ $$82441165$$s101586$$uhttp://cds.cern.ch/record/2852698/files/fig_nsfinal2.png$$y00015 Impact of isobar-like collisions on the initial condition of QGP. Better control on the initial condition can be achieved by exploiting the constraints from both the ratios of final-state observables ($v_2$ and $v_3$ on the right side \cite{STAR:2021mii}) and the nuclear structure knowledge (left side).
002852698 8564_ $$82441166$$s854380$$uhttp://cds.cern.ch/record/2852698/files/GPDimaging.png$$y00058 Left: 3-dimensional representation of the $x$-dependence of the proton transverse charge radius. Right: artistic illustration of the corresponding rising quark density and transverse extent as a function of $x$.
002852698 8564_ $$82441167$$s16805$$uhttp://cds.cern.ch/record/2852698/files/raawithstar.png$$y00052 (Left) Simulated precision of the centrality dependence of the Upsilon modification in Au+Au collisions. (Right) The $p_{T}$ dependence of the upsilon \RAA\ for the separated 1S, 2S and 3S states for 0-60\% central collisions, compared with the STAR measurement for the 1S separated 2S states~\cite{STAR:2022rpk}. Both figures are from Ref.~\cite{sPHENIXBUP2022}
002852698 8564_ $$82441168$$s221195$$uhttp://cds.cern.ch/record/2852698/files/phasediagram_LHC_RHIC_FAIR_July2022.png$$y00019 Left: Sketch of the QCD phase diagram, incorporating a conjectured critical end point and first order transition. The yellow line indicates the region of the phase diagram where lattice QCD can reliably predict the smooth crossover region of the hadron-QGP transition, up to $\mu_B/T \leq 2$. Figure adapted from \cite{Geesaman:2015fha}. Right: Energy dependence of the net-proton (filled circles) and proton (open squares) high moments from Au+Au collisions ~\cite{STAR:2021iop,Adamczewski-Musch:2020slf,STAR:2021fge}. Model results from Hadron-Resonance Gas (HRG) model~\cite{Braun-Munzinger:2020jbk}, and UrQMD~\cite{Bleicher:1999xi,Bass:1998ca} are shown. The thin red and blue dot-dashed lines are qualitative predictions~\cite{Stephanov:2011pb} in the presence of a critical point. Adapted from Ref.~\cite{STAR:2021fge}.
002852698 8564_ $$82441169$$s10710$$uhttp://cds.cern.ch/record/2852698/files/correlation_new.png$$y00029 Left: The impact of RHIC data on the truncated moment of the gluon helicity from the new DSSV evaluations \cite{RHIC-Cold-QCD} at $Q^2 = 10\,(\mathrm{GeV}/c)^2$ integrated with the range of $x \in (0.001,0.05)$ versus the range of $x \in (0.05,1)$. The green dot represents the best fit to the data from the DSSV08 evaluations, the black dot shows the DSSV14 results \cite{deFlorian:2014yva}, and the new preliminary fit including the new RHIC data sets is marked with the blue dot. Blue areas represent the 90\% C.L. limit contours. Right: The difference of $\bar{u}$ and $\bar{d}$ polarizations as a function of $x$ at a scale of $Q^{2}$= 10 GeV$^{2}$ before and after NNPDFpol1.1 \cite{Nocera:2014gqa} reweighting with STAR 2013 $W$ $A_{L}$~\cite{Adam:2018bam}. The green band shows the NNPDFpol1.1 results \cite{Nocera:2014gqa} and the blue hatched band shows the corresponding distribution after the STAR 2013 $W$ data are included by reweighting.
002852698 8564_ $$82441170$$s149030$$uhttp://cds.cern.ch/record/2852698/files/3Dprocesses.png$$y00067 {\it Upper panel:} Illustration of the two types of processes that occur in lepton-nucleus collisions: a semi-inclusive process where a hadron, hadron pair, jet or dijet is measured and the remnant nucleus is destroyed (left) and an exclusive process where the nucleus remains intact (right). {\it Lower panel:} Tomographic images in slices of $x$ for the quarks and gluons in a nucleus: (transverse) spatial tomography in $\bf{b_T}$-space provided by exclusive processes (left); (transverse) momentum tomography in $\bf{k_T}$-space provided by semi-inclusive processes (right). Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441171$$s11620$$uhttp://cds.cern.ch/record/2852698/files/CombinedPressure.png$$y00032 Pressure distribution in the proton. Left: estimates of the quark contribution from the DVCS measurements~\cite{Burkert:2018bqq}; Right: Lattice QCD calculations of the same quantity, including the gluon contribution~\cite{Shanahan:2018nnv}. These results show that the pressure is positive at small distances and negative at large distances.
002852698 8564_ $$82441172$$s32789$$uhttp://cds.cern.ch/record/2852698/files/LHCb_ratio.png$$y00018 Ratio of $B^0_s/B^0$ in \pp\ collisions as a function of the charged particle multiplicity scaled by the average multiplicity in \pp\ collisions for three meson \pt\ selections: 0--6~GeV (left), 6--12 GeV (middle), 12--20~GeV (right). Expectations for production using the PYTHIA generator (with and without color reconnections) are also shown, along with the ranges measured previously in $e^+ e^-$ collisions. Figure from Ref.~\cite{LHCb:2022syj}.
002852698 8564_ $$82441173$$s619272$$uhttp://cds.cern.ch/record/2852698/files/EMCSRC1.png$$y00039 Left: Measured structure function ratio for different nuclei relative to deuterium~\cite{CLAS:2019vsb}. Right: The extracted universal modification function of nucleons in SRC pairs from a global data analysis~\cite{Segarra:2019gbp}.
002852698 8564_ $$82441174$$s16052$$uhttp://cds.cern.ch/record/2852698/files/r2g_compare.png$$y00025 (Left) Direct Rosenbluth separation results for $\sqrt{\text{RS}}$ ( $ = \mu_p$G$_{_E}$/G$_{_M}$ in the one-photon exchange approximation). The black solid (red dashed) curve shows the results of the fit to the cross section data with (without) the new GMp12 data (``This work")~\cite{Christy:2021snt}. The blue dot-dashed curve shows $\mu_p$G$_{_E}$/G$_{_M}$ from a fit to the polarization data. (Right) The ratio of positron-proton to electron-proton elastic cross sections as a function of $\epsilon$, as measured by OLYMPUS~\cite{OLYMPUS:2016gso}, CLAS~\cite{CLAS:2016fvy}, and at VEPP-3~\cite{Rachek:2014fam}. The data are generally closer to unity than the expectation if the difference between the Rosenbluth separation and polarization method is fully attributed to two-photon exchange effects.
002852698 8564_ $$82441175$$s9527$$uhttp://cds.cern.ch/record/2852698/files/nPDF-improve.png$$y00072 Left: The cross section ratio $\sigma^{\gamma^* A}/(A \, \sigma^{\gamma^* p})$ measures the nuclear modification to the parton distribution functions (figure from \cite{Klein:2019qfb}). Right: Relative uncertainty bands for the gluon distributions in gold nuclei at $Q^{2}=1.69\text{ GeV}^{2}$. The blue band is the original EPPS16* fit, the green band incorporates inclusive cross section pseudodata and the orange band also adds the charm cross section $\sigma^{\rm charm}$ (figure from~\cite{EIC-WP-2023LRP}).
002852698 8564_ $$82441176$$s40660$$uhttp://cds.cern.ch/record/2852698/files/xsec_1d.png$$y00059 Projected 1D $J/\psi$ cross sections as a function of photon energy $E_\gamma$, compared with the available world data. The blue disks show the photoproduction results, while the red disks show the electroproduction results, and the green circles show the results for exclusive electroproduction measurement. Each of the measurements in this figure has a corresponding high-precision measurement of the $t$-dependent differential cross section. Figure from~\cite{JeffersonLabSoLID:2022iod}.
002852698 8564_ $$82441177$$s303518$$uhttp://cds.cern.ch/record/2852698/files/Cover_D3.png$$y00000 Experimental methods to study Cold and Hot QCD using electron-nucleon (nucleus) scattering (top left) and heavy-ion collisions (top right), respectively. The Electron-Ion Collider (bottom), to be realized within the next LRP period, will bring new, exciting experimental programs to QCD research.
002852698 8564_ $$82441178$$s86999$$uhttp://cds.cern.ch/record/2852698/files/g1.png$$y00066 Left: Impact of the projected EIC pseudodata on the spin decomposition of the proton based on the most recent version of the DSSV14 parametrization~\cite{Borsa:2020lsz,deFlorian:2014yva, deFlorian:2019zkl}; Right: EIC impact on the $g_1$ structure function based on parameterizations with or without the theory-inspired small-$x$ extrapolation~\cite{Adamiak:2021ppq} (see text).
002852698 8564_ $$82441179$$s39867$$uhttp://cds.cern.ch/record/2852698/files/v2_pT.png$$y00012 Left: $D$ meson \vtwo\ for \pbpb\ \cite{ALICE:2018lyv,CMS:2017vhp} and \auau\ ~\cite{Adamczyk:2017xur} collisions. Center: The nuclear modification factor of $D$-mesons for \pbpb\ \cite{ALICE:2018lyv,CMS:2017qjw} \auau\ ~\cite{Adam:2018inb} collisions. Right: The temperature dependence of the charm quark spatial diffusion coefficient, $2\pi T$\Ds~\cite{Dong:2019byy}.
002852698 8564_ $$82441180$$s136659$$uhttp://cds.cern.ch/record/2852698/files/Upsilon_centrality_simulation.png$$y00051 (Left) Simulated precision of the centrality dependence of the Upsilon modification in Au+Au collisions. (Right) The $p_{T}$ dependence of the upsilon \RAA\ for the separated 1S, 2S and 3S states for 0-60\% central collisions, compared with the STAR measurement for the 1S separated 2S states~\cite{STAR:2022rpk}. Both figures are from Ref.~\cite{sPHENIXBUP2022}
002852698 8564_ $$82441181$$s249147$$uhttp://cds.cern.ch/record/2852698/files/mz_2D_v2_edit.png$$y00036 Two-dimensional $J/\psi$ photoproduction cross section from the $J/\psi$-007 experiment, as a function of Mandelstam $|t|$ and photon energy $E_\gamma$~\cite{Duran:2022xag}. The grey surface is the result from a fit following a holographic QCD approach.
002852698 8564_ $$82441182$$s35710$$uhttp://cds.cern.ch/record/2852698/files/STARLcD0forWhitePaper.png$$y00010 $\Lambda_c/D^0$ ratios in \auau\ \cite{STAR:2019ank} collisions (left) and \pbpb\ \cite{ALICE:2021bib} collisions (right) as a function of transverse momentum compared to several models as discussed in the text.
002852698 8564_ $$82441183$$s103874$$uhttp://cds.cern.ch/record/2852698/files/RE_quark_mass.png$$y00045 State of art lattice QCD calculations of emerging properties of the nucleon: (left) spin decomposition in terms of the angular momentum $J_q$ for the $u,d$ and $s$ quarks and the gluon angular momentum $J_g$ in the $n_f = 2+1+1$ calculation from the ETMC collaboration~\cite{Alexandrou:2020sml}; (right) mass decomposition in terms of $\langle H_m\rangle$, $\langle H_E\rangle (\mu)$, $ \langle H_g\rangle (\mu)$, and $ \frac{1}{4}\langle H_a\rangle$ at $\mu = 2$ GeV as functions of $m_{\pi}^2$ from $\chi$-QCD collaboration~\cite{Yang:2018nqn}.
002852698 8564_ $$82441184$$s90078$$uhttp://cds.cern.ch/record/2852698/files/xQ2-regions-CGC.png$$y00069 Left: Schematic illustration of the probe resolution, $Q^2$, versus $x$, indicating regions of non-perturbative (band at the bottom) and perturbative QCD (everything above the non-perturbative region), including in the latter, low to high saturated parton density, and the transition region between them \cite{Accardi:2012qut}. The saturation region is shown in yellow. Right: A saturation model prediction of the hadron-hadron correlation function $C (\Delta \phi)$ to be measured in \ep \ and \eA \ collisions at EIC plotted as a function of the azimuthal angle $\Delta \phi$: the away side peak at $\Delta \phi = \pi$ decreases as one goes from \ep \ to \eA \ due to the increase in the saturation scale with $A$. The ranges of transverse momenta ($p_T$) and longitudinal momentum fractions ($z_h$) of the trigger and associated hadrons are specified on the plot. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441185$$s117736$$uhttp://cds.cern.ch/record/2852698/files/TCS.png$$y00033 Forward-backward asymmetry as a function of the momentum transfer $t$ to the proton. The solid line shows the prediction of a GPD model that describes worldwide DVCS data, including the $D$-term contribution. The red triangles show the asymmetry computed for simulated Bethe-Heitler (BH) events. The dashed and dash-dotted lines are predictions of models without the contribution of the $D$-term. Note that the $D$-term contributes more than 50\% to the asymmetry.
002852698 8564_ $$82441186$$s28688$$uhttp://cds.cern.ch/record/2852698/files/JA.png$$y00038 {Left:} The ratio of (e,e’pp) to (e,e’p) cross sections for different nuclei as a function of the missing momentum of the first proton~\cite{CLAS:2020mom}. The gray band shows a factorized calculation for carbon (C) using the Generalized Contact Formalism (GCF) and the AV18 potential. {Right:} Extracted $np$-SRC/$pp$-SRC ratio from recent comparisons of $^3$H and $^3$He scattering along with previous world's extractions~\cite{Li:2022fhh}.
002852698 8564_ $$82441187$$s446747$$uhttp://cds.cern.ch/record/2852698/files/SoLID_in_HallA_slide.png$$y00055 Schematic layout of SoLID in Hall A of JLab, with the endcap pulled downstream to allow detector installation and reconfiguration. The two high resolution spectrometers (HRS-L and HRS-R, not in use) are parked at backward angles.
002852698 8564_ $$82441188$$s13879$$uhttp://cds.cern.ch/record/2852698/files/OAM_DSSV.png$$y00065 Left: Impact of the projected EIC pseudodata on the spin decomposition of the proton based on the most recent version of the DSSV14 parametrization~\cite{Borsa:2020lsz,deFlorian:2014yva, deFlorian:2019zkl}; Right: EIC impact on the $g_1$ structure function based on parameterizations with or without the theory-inspired small-$x$ extrapolation~\cite{Adamiak:2021ppq} (see text).
002852698 8564_ $$82441189$$s107915$$uhttp://cds.cern.ch/record/2852698/files/Unis_Labs_Phds.png$$y00082 DOE - FY2020 Nuclear Physics Workforce Survey of USA stats \href{https://science.osti.gov/np/-/media/np/pdf/about/Workforce_Survey.pdf}{[link]}
002852698 8564_ $$82441190$$s16522$$uhttp://cds.cern.ch/record/2852698/files/fig3_mod2.png$$y00004 Constraints on $\eta/s$ and $\zeta/s$ from Ref.~\cite{JETSCAPE:2020shq}, as represented by the $90$\% credible intervals for the posterior and the prior, along with their corresponding information gain (Kullback-Leibler divergence $D_{KL}$).
002852698 8564_ $$82441191$$s20081$$uhttp://cds.cern.ch/record/2852698/files/gT_2205_00999_Fig3_left_edit.png$$y00056 Projected impact of the SoLID program on: (left) the $d$ vs. $u$ tensor charge from SIDIS measurements; and (right) the PDF ratio $d/u$ from PVDIS proton measurement. See~\cite{JeffersonLabSoLID:2022iod} for details.
002852698 8564_ $$82441192$$s554008$$uhttp://cds.cern.ch/record/2852698/files/ePIC_Detector.png$$y00076 Schematic drawing of the ePIC central detector showcasing its high-precision vertexing and tracking detectors, Cerenkov and TOF based PID detectors and electromagnetic and hadronic calorimeters. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441193$$s156160$$uhttp://cds.cern.ch/record/2852698/files/e4v_fig2.png$$y00079 Quasi-elastic reconstructed energy. The 1.159 GeV $C(e, e')_{0\pi}$ cross section plotted as a function of the reconstructed energy $E_{\rm QE}$ for data (black points), and widely used interaction models such as GENIE SuSAv2 (solid black curve) and GENIE G2018 (dotted black curve). The colored lines show the contributions of different processes to the GENIE SuSAv2 cross section: quasi-elastic (QE), Meson Exchange Current (MEC), resonances (RES) and DIS. It can be seen that the reconstructed energy distributions based on these models agree only qualitatively with data and the difference can be up to 25\%. Figure from~\cite{CLAS:2021neh}.
002852698 8564_ $$82441194$$s268817$$uhttp://cds.cern.ch/record/2852698/files/EIC_foundation_slide_crop.png$$y00064 A chronological display of the publications that document the development of the EIC science case. From left to right: The 2002~\cite{Symons:2002} and 2007~\cite{Tribble:2007} LRPs, a 2009 report of the EIC Working Group~\cite{EIC-WP-2007LRP}, a report on the joint 2010 BNL/INT/JLab program on EIC~\cite{Boer:2011fh}, the 2012 EIC White Paper~\cite{Accardi:2012qut}, the 2013 NSAC Subcommitte Report on Scientific Facilities, the 2015 LRP~\cite{Geesaman:2015fha}, and the NAS report~\cite{NAP25171}. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441195$$s15877$$uhttp://cds.cern.ch/record/2852698/files/sin2th_SoLID_2022_crop.png$$y00080 Left: experimental determination of the weak mixing angle $\sin^2\theta_W$ including expected results from MOLLER and SoLID PVDIS. Data points for the Tevatron and the LHC are shifted horizontally for clarity. Right: Current experimental knowledge of the couplings $g_{VA}^{eq}$ (vertical axis), with the projected SoLID result shown by the cyan ellipse. Also shown are expected results from P2 at Mainz (purple and pink vertical bands) and the combined projection using SoLID, P2, and all existing world data (magenta ellipse), centered at the current best fit values. See ~\cite{JeffersonLabSoLID:2022iod} for details.
002852698 8564_ $$82441196$$s17752$$uhttp://cds.cern.ch/record/2852698/files/STAR_pA_f3.png$$y00043 Left: Comparison of correlations functions with azimuthal angle separation between forward ($2.6<\eta<4.0$) $\pi^{0}$s in $p$+$p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{{_{NN}}}}=200$ GeV. Right: Relative area of back-to-back di-$\pi^0$ correlations in $p+$Au and $p+$Al with respect to $p$+$p$ collisions for $p^{\mathrm{trig}}_{T}$ = 1.5$-$2 GeV/$c$ and $p^{\mathrm{asso}}_{T}$ = 1$-$1.5 GeV/$c$.
002852698 8564_ $$82441197$$s10117$$uhttp://cds.cern.ch/record/2852698/files/recres_qcd.png$$y00023 The PRad $r_{p}$ result shown along with the projected result for PRad-II and other measurements.
002852698 8564_ $$82441198$$s55975$$uhttp://cds.cern.ch/record/2852698/files/CMS_largeRRaa.png$$y00008 Left: Ratio of the jet fragmentation functions in 0--10\% central \pbpb\ collisions to those in \pp\ collisions for three jet $p_T^{\rm jet}$ as a function of the $p_T$ of the particles in the jet. From Ref.~\cite{ATLAS:2018bvp}. Right: Ratio of the jet \RAA\ in 0--10\% central \pbpb\ collisions for jets of radius $\textrm{R}$ to the \RAA\ of ${\rm R} = 0.2$ jets as a function of $\textrm{R}$ for three $p_T^{\rm jet}$. Comparisons to a variety of theoretical calculations are shown. Figure from Ref.~\cite{CMS:2021vui}. Theory results from three models~\cite{Schenke:2009gb,Hulcher:2017cpt,He:2018xjv}.
002852698 8564_ $$82441199$$s106277$$uhttp://cds.cern.ch/record/2852698/files/shadowing0.png$$y00071 Left: The cross section ratio $\sigma^{\gamma^* A}/(A \, \sigma^{\gamma^* p})$ measures the nuclear modification to the parton distribution functions (figure from \cite{Klein:2019qfb}). Right: Relative uncertainty bands for the gluon distributions in gold nuclei at $Q^{2}=1.69\text{ GeV}^{2}$. The blue band is the original EPPS16* fit, the green band incorporates inclusive cross section pseudodata and the orange band also adds the charm cross section $\sigma^{\rm charm}$ (figure from~\cite{EIC-WP-2023LRP}).
002852698 8564_ $$82441200$$s45289$$uhttp://cds.cern.ch/record/2852698/files/plot14_netp_fit_10March2022.png$$y00020 Left: Sketch of the QCD phase diagram, incorporating a conjectured critical end point and first order transition. The yellow line indicates the region of the phase diagram where lattice QCD can reliably predict the smooth crossover region of the hadron-QGP transition, up to $\mu_B/T \leq 2$. Figure adapted from \cite{Geesaman:2015fha}. Right: Energy dependence of the net-proton (filled circles) and proton (open squares) high moments from Au+Au collisions ~\cite{STAR:2021iop,Adamczewski-Musch:2020slf,STAR:2021fge}. Model results from Hadron-Resonance Gas (HRG) model~\cite{Braun-Munzinger:2020jbk}, and UrQMD~\cite{Bleicher:1999xi,Bass:1998ca} are shown. The thin red and blue dot-dashed lines are qualitative predictions~\cite{Stephanov:2011pb} in the presence of a critical point. Adapted from Ref.~\cite{STAR:2021fge}.
002852698 8564_ $$82441201$$s298506$$uhttp://cds.cern.ch/record/2852698/files/GP.png$$y00026 Left: world data~\cite{Fonvieille:2019eyf,VCS:2000ldk,A1:2008rjb,A1:2019mrv,A1:2020nof,Blomberg:2019caf,Li:2022sqg,A2CollaborationatMAMI:2021vfy,JeffersonLabHallA:2004vsy,JeffersonLabHallA:2012zwt,Bourgeois:2006js,Bourgeois:2011zz} for the proton electric $\alpha_{\rm E}(Q^2)$ VCS generalized polarizability. The filled symbols mark the recent experiments from MAMI~\cite{A1:2008rjb,A1:2019mrv,A1:2020nof} (green and black solid circles) and from JLab~\cite{Li:2022sqg} (blue solid circles). The dispersion-relations (DR) and low-energy-expansion analysis results are shown with open circles and square symbols, respectively. The theoretical calculations of BChPT~\cite{Lensky:2016nui}, NRQCM~\cite{Pasquini:2000ue}, LSM~\cite{Metz:1996fn}, ELM~\cite{Korchin:1998cx} and DR~\cite{Pasquini:2000pk,Pasquini:2001yy,Drechsel:2002ar}, as well the experimental fit of the electric generalized polarizability that includes all the world data are also shown. Right: The VVCS generalized longitudinal-transverse spin polarizability $\delta_{\rm LT}^n(Q^2)$ for the neutron measured recently at JLab (blue circles~\cite{E97-110:2021mxm}) and compared with a previous JLab measurement (red triangles~\cite{Amarian:2004yf}), early $\chi$EFT calculations (green~\cite{Bernard:2002pw} and red lines~\cite{Kao:2002cp}), state-of-the-art $\chi$EFT calculations (blue~\cite{Bernard:2012hb} and pink~\cite{Alarcon:2020icz} bands), and the phenomenological MAID~\cite{Drechsel:1998hk} model.
002852698 8564_ $$82441202$$s26377$$uhttp://cds.cern.ch/record/2852698/files/Fig5Left.png$$y00005 Left: The distribution of jets as a function of $\theta_g$ in 0--10\% central \pbpb\ collisions and \pp\ colliions (top) and the ratio of the distributions in \pbpb\ collisions compared to \pp\ collisions (bottom) compared to various theoretical calculations. Figure from Ref.~\cite{ALargeIonColliderExperiment:2021mqf}. Theory results shown include JETSCAPE~\cite{Putschke:2019yrg}, JEWEL~\cite{Zapp:2012ak, Zapp:2013vla}, Caucal et al.~\cite{Caucal:2019uvr, Caucal:2018dla}, Chien et al.~\cite{Chien:2016led}, Qin et al.~\cite{Chang:2019nrx}, and Pablos et al.~\cite{Casalderrey-Solana:2014bpa, Hulcher:2017cpt, Casalderrey-Solana:2019ubu}. Right: The nuclear suppression factor \RAA\ as a function of $r_{g}$ for 0--10\% central \pbpb\ collisions for four selections on $p_T^{\rm jet}$. Figure from Ref.~\cite{ATLAS:2022vii}.
002852698 8564_ $$82441203$$s7924$$uhttp://cds.cern.ch/record/2852698/files/J_vbar_2+1+1.png$$y00044 State of art lattice QCD calculations of emerging properties of the nucleon: (left) spin decomposition in terms of the angular momentum $J_q$ for the $u,d$ and $s$ quarks and the gluon angular momentum $J_g$ in the $n_f = 2+1+1$ calculation from the ETMC collaboration~\cite{Alexandrou:2020sml}; (right) mass decomposition in terms of $\langle H_m\rangle$, $\langle H_E\rangle (\mu)$, $ \langle H_g\rangle (\mu)$, and $ \frac{1}{4}\langle H_a\rangle$ at $\mu = 2$ GeV as functions of $m_{\pi}^2$ from $\chi$-QCD collaboration~\cite{Yang:2018nqn}.
002852698 8564_ $$82441204$$s404578$$uhttp://cds.cern.ch/record/2852698/files/3Dimaging.png$$y00068 {\it Upper panel:} Illustration of the two types of processes that occur in lepton-nucleus collisions: a semi-inclusive process where a hadron, hadron pair, jet or dijet is measured and the remnant nucleus is destroyed (left) and an exclusive process where the nucleus remains intact (right). {\it Lower panel:} Tomographic images in slices of $x$ for the quarks and gluons in a nucleus: (transverse) spatial tomography in $\bf{b_T}$-space provided by exclusive processes (left); (transverse) momentum tomography in $\bf{k_T}$-space provided by semi-inclusive processes (right). Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441205$$s46992$$uhttp://cds.cern.ch/record/2852698/files/v2-sonic-shen-mstverr.png$$y00016 Measurement of \vtwo\ (top) and \vthree\ (bottom) for charged particles in \pAu, \dAu, and \HeAu\ collisions as a function of \pt. Calculations from two hydrodynamic models \cite{Shen:2016zpp,Habich:2014jna} and a CGC based model \cite{Mace:2018vwq} are shown. Figure from Ref.~\cite{PHENIX:2018lia}.
002852698 8564_ $$82441206$$s78890$$uhttp://cds.cern.ch/record/2852698/files/isobar_compilation_plot.png$$y00021 Ratios of observables in Ru+Ru over Zr+Zr collisions from the STAR isobar blind analysis~\cite{STAR:2021mii}. The ratios of the CME-sensitive observables (solid markers) are found to be below unity and close to the ratio of inverse multiplicities ($N_{\rm trk}^{\rm offline}$). The tan and aqua bands show background estimates calculated using data and the HIJING model~\cite{Feng:2022yus}. No significant CME signal difference between the two isobars is observed.
002852698 8564_ $$82441207$$s25833$$uhttp://cds.cern.ch/record/2852698/files/pressure.png$$y00031 Pressure distribution in the proton. Left: estimates of the quark contribution from the DVCS measurements~\cite{Burkert:2018bqq}; Right: Lattice QCD calculations of the same quantity, including the gluon contribution~\cite{Shanahan:2018nnv}. These results show that the pressure is positive at small distances and negative at large distances.
002852698 8564_ $$82441208$$s101280$$uhttp://cds.cern.ch/record/2852698/files/W_impact.png$$y00030 Left: The impact of RHIC data on the truncated moment of the gluon helicity from the new DSSV evaluations \cite{RHIC-Cold-QCD} at $Q^2 = 10\,(\mathrm{GeV}/c)^2$ integrated with the range of $x \in (0.001,0.05)$ versus the range of $x \in (0.05,1)$. The green dot represents the best fit to the data from the DSSV08 evaluations, the black dot shows the DSSV14 results \cite{deFlorian:2014yva}, and the new preliminary fit including the new RHIC data sets is marked with the blue dot. Blue areas represent the 90\% C.L. limit contours. Right: The difference of $\bar{u}$ and $\bar{d}$ polarizations as a function of $x$ at a scale of $Q^{2}$= 10 GeV$^{2}$ before and after NNPDFpol1.1 \cite{Nocera:2014gqa} reweighting with STAR 2013 $W$ $A_{L}$~\cite{Adam:2018bam}. The green band shows the NNPDFpol1.1 results \cite{Nocera:2014gqa} and the blue hatched band shows the corresponding distribution after the STAR 2013 $W$ data are included by reweighting.
002852698 8564_ $$82441209$$s24859737$$uhttp://cds.cern.ch/record/2852698/files/2303.02579.pdf$$yFulltext
002852698 8564_ $$82441210$$s117022$$uhttp://cds.cern.ch/record/2852698/files/little_bang_v2.png$$y00001 The stages of a relativistic heavy ion collision. Figure adapted from \cite{Sorensen:2009cz,Shen:2015msa}.
002852698 8564_ $$82441211$$s28348$$uhttp://cds.cern.ch/record/2852698/files/sphenix_jet_rates.png$$y00049 Left: Counts of jets, hadrons and direct photons projected from sPHENIX operation in \pp\ and 0--10\% central \auau\ collisions. Right: The nuclear modification factor \RAA\ as a function of \pt\ for 0--10\% central \auau\ collisions expected from sPHENIX operation. The error bars show the statistical uncertainties only. Both plots are from Ref.~\cite{sPHENIXBUP2022}.
002852698 8564_ $$82441212$$s53543$$uhttp://cds.cern.ch/record/2852698/files/v2_v3_inte_PbPb_vs_pPb_peripheral.png$$y00003 Experimental data on $v_2\{2\}$ and $v_3\{2\}$ from the STAR \cite{Adamczyk:2015obl,Adam:2019woz}, PHENIX \cite{Aidala:2017ajz}, and ALICE \cite{ALICE:2019zfl} Collaborations, with theory results from the IPGlasma+MUSIC+UrQMD model. Figure adapted from \cite{Schenke:2020mbo}.
002852698 8564_ $$82441213$$s36310$$uhttp://cds.cern.ch/record/2852698/files/FormFactorFig2.png$$y00024 (Left) Direct Rosenbluth separation results for $\sqrt{\text{RS}}$ ( $ = \mu_p$G$_{_E}$/G$_{_M}$ in the one-photon exchange approximation). The black solid (red dashed) curve shows the results of the fit to the cross section data with (without) the new GMp12 data (``This work")~\cite{Christy:2021snt}. The blue dot-dashed curve shows $\mu_p$G$_{_E}$/G$_{_M}$ from a fit to the polarization data. (Right) The ratio of positron-proton to electron-proton elastic cross sections as a function of $\epsilon$, as measured by OLYMPUS~\cite{OLYMPUS:2016gso}, CLAS~\cite{CLAS:2016fvy}, and at VEPP-3~\cite{Rachek:2014fam}. The data are generally closer to unity than the expectation if the difference between the Rosenbluth separation and polarization method is fully attributed to two-photon exchange effects.
002852698 8564_ $$82441214$$s233301$$uhttp://cds.cern.ch/record/2852698/files/jlab_upgrade_fig2.png$$y00062 A new tunnel and beam line (shown raised) connects the LERF to CEBAF and transports the 123~MeV $e^+$ beam for injection and acceleration into CEBAF 12~GeV.
002852698 8564_ $$82441215$$s19971$$uhttp://cds.cern.ch/record/2852698/files/LD-FIG2.png$$y00027 Left: The $F_2^n/F_2^p $ ratio plotted versus the Bjorken $x$ from the JLab MARATHON experiment~\cite{JeffersonLabHallATritium:2021usd}. Right: A plot of $\bar d(x)/\bar u(x)$ extracted from the measured SeaQuest $\sigma^{pd} (x)/2\sigma^{pp}(x)$ cross section ratio~\cite{SeaQuest:2021zxb}, compared with data from E866/NuSea~\cite{NuSea:2001idv} and CT18NLO parton distributions.
002852698 8564_ $$82441216$$s43963$$uhttp://cds.cern.ch/record/2852698/files/PolarizationVsEnergyUpdated.png$$y00022 Adapted from~\cite{STAR:2021beb}. World dataset~\cite{STAR:2007ccu,STAR:2017ckg,STAR:2018gyt,ALICE:2019onw,STAR:2021beb,HADES:2022enx} of global polarization of $\Lambda$ and $\overline{\Lambda}$ from midcentral heavy ion collisions vs.~$\sqrt{s_{ NN}}$. Statistical uncertainties are represented with lines while systematic uncertainties are represented with boxes. All results are scaled~\cite{Becattini:2020ngo} using the decay parameter $\alpha_\Lambda=0.732$ \cite{ParticleDataGroup:2020ssz}. Curves are calculations with a hybrid hydrodynamic model \cite{Karpenko:2016jyx}, chiral-kinetic transport \cite{Sun:2017xhx}, a Monte Carlo transport model AMPT \cite{Guo:2021udq}, and a three-fluid hydrodynamic calculation~\cite{Ivanov:2020udj}.
002852698 8564_ $$82441217$$s42953$$uhttp://cds.cern.ch/record/2852698/files/LcD0_010_3050_pp_theory_3panelPaper.png$$y00011 $\Lambda_c/D^0$ ratios in \auau\ \cite{STAR:2019ank} collisions (left) and \pbpb\ \cite{ALICE:2021bib} collisions (right) as a function of transverse momentum compared to several models as discussed in the text.
002852698 8564_ $$82441218$$s17648$$uhttp://cds.cern.ch/record/2852698/files/STAR_pA_f2.png$$y00042 Left: Comparison of correlations functions with azimuthal angle separation between forward ($2.6<\eta<4.0$) $\pi^{0}$s in $p$+$p$, $p+$Al, and $p+$Au collisions at $\sqrt{s_{{_{NN}}}}=200$ GeV. Right: Relative area of back-to-back di-$\pi^0$ correlations in $p+$Au and $p+$Al with respect to $p$+$p$ collisions for $p^{\mathrm{trig}}_{T}$ = 1.5$-$2 GeV/$c$ and $p^{\mathrm{asso}}_{T}$ = 1$-$1.5 GeV/$c$.
002852698 8564_ $$82441219$$s54564$$uhttp://cds.cern.ch/record/2852698/files/contour_SoLID_2022_v2_edit.png$$y00081 Left: experimental determination of the weak mixing angle $\sin^2\theta_W$ including expected results from MOLLER and SoLID PVDIS. Data points for the Tevatron and the LHC are shifted horizontally for clarity. Right: Current experimental knowledge of the couplings $g_{VA}^{eq}$ (vertical axis), with the projected SoLID result shown by the cyan ellipse. Also shown are expected results from P2 at Mainz (purple and pink vertical bands) and the combined projection using SoLID, P2, and all existing world data (magenta ellipse), centered at the current best fit values. See ~\cite{JeffersonLabSoLID:2022iod} for details.
002852698 8564_ $$82441220$$s59759$$uhttp://cds.cern.ch/record/2852698/files/AuAu_v22_v32_vs_dNch_STAR.png$$y00002 Experimental data on $v_2\{2\}$ and $v_3\{2\}$ from the STAR \cite{Adamczyk:2015obl,Adam:2019woz}, PHENIX \cite{Aidala:2017ajz}, and ALICE \cite{ALICE:2019zfl} Collaborations, with theory results from the IPGlasma+MUSIC+UrQMD model. Figure adapted from \cite{Schenke:2020mbo}.
002852698 8564_ $$82441221$$s138492$$uhttp://cds.cern.ch/record/2852698/files/solid_tmd.png$$y00060 The impact of the SoLID SIDIS program on the $u$ and $d$ quark transversity (left) and Sivers distribution (right). The wide uncertainty bands show the current results based on a global analysis of world data while the narrower, darker bands show the SoLID projections. Figure from~\cite{JeffersonLabSoLID:2022iod}.
002852698 8564_ $$82441222$$s51919$$uhttp://cds.cern.ch/record/2852698/files/plotDIS_edit3.png$$y00054 Landscape of the cold QCD program at the DIS facilities. SoLID expands the luminosity frontier in the large $x$ region whereas the EIC does the same for low $x$. Together, JLab+SoLID and the EIC will, over the next several decades, cover a broad and largely complementary kinematic range, with SoLID probing key physics and providing precision data primarily in the high-$x$ region. Figure from~\cite{Arrington:2021alx, JeffersonLabSoLID:2022iod}.
002852698 8564_ $$82441223$$s39979$$uhttp://cds.cern.ch/record/2852698/files/RAA_pT.png$$y00013 Left: $D$ meson \vtwo\ for \pbpb\ \cite{ALICE:2018lyv,CMS:2017vhp} and \auau\ ~\cite{Adamczyk:2017xur} collisions. Center: The nuclear modification factor of $D$-mesons for \pbpb\ \cite{ALICE:2018lyv,CMS:2017qjw} \auau\ ~\cite{Adam:2018inb} collisions. Right: The temperature dependence of the charm quark spatial diffusion coefficient, $2\pi T$\Ds~\cite{Dong:2019byy}.
002852698 8564_ $$82441224$$s31574$$uhttp://cds.cern.ch/record/2852698/files/alice_projection_pid_v2.png$$y00047 Left: ALICE projections for PID $v_2$ in 10--20\% centrality PbPb collisions for an integrated luminosity of 10~nb$^{-1}$ at HL-LHC~\cite{ALICE-PUBLIC-2019-001,Citron:2018lsq}. Right: CMS projection of long-range two-particle correlations with $\Delta\eta$ up to 8 units from Phase-2 upgrades for the HL-LHC~\cite{CMS-DP-2021-037}.
002852698 8564_ $$82441225$$s82719$$uhttp://cds.cern.ch/record/2852698/files/41586_2020_2021_Fig2_right.png$$y00037 {Left:} The ratio of (e,e’pp) to (e,e’p) cross sections for different nuclei as a function of the missing momentum of the first proton~\cite{CLAS:2020mom}. The gray band shows a factorized calculation for carbon (C) using the Generalized Contact Formalism (GCF) and the AV18 potential. {Right:} Extracted $np$-SRC/$pp$-SRC ratio from recent comparisons of $^3$H and $^3$He scattering along with previous world's extractions~\cite{Li:2022fhh}.
002852698 8564_ $$82441226$$s35260$$uhttp://cds.cern.ch/record/2852698/files/ATLAS_rg_overlay.png$$y00006 Left: The distribution of jets as a function of $\theta_g$ in 0--10\% central \pbpb\ collisions and \pp\ colliions (top) and the ratio of the distributions in \pbpb\ collisions compared to \pp\ collisions (bottom) compared to various theoretical calculations. Figure from Ref.~\cite{ALargeIonColliderExperiment:2021mqf}. Theory results shown include JETSCAPE~\cite{Putschke:2019yrg}, JEWEL~\cite{Zapp:2012ak, Zapp:2013vla}, Caucal et al.~\cite{Caucal:2019uvr, Caucal:2018dla}, Chien et al.~\cite{Chien:2016led}, Qin et al.~\cite{Chang:2019nrx}, and Pablos et al.~\cite{Casalderrey-Solana:2014bpa, Hulcher:2017cpt, Casalderrey-Solana:2019ubu}. Right: The nuclear suppression factor \RAA\ as a function of $r_{g}$ for 0--10\% central \pbpb\ collisions for four selections on $p_T^{\rm jet}$. Figure from Ref.~\cite{ATLAS:2022vii}.
002852698 8564_ $$82441227$$s59695$$uhttp://cds.cern.ch/record/2852698/files/hadronization_double_ratio.png$$y00073 Ratio of relative particle production ($N_h/N_\mathrm{incl}$) in \eA\ over that in \ep\ as a function of $z$, the momentum fraction of the parton carried by the respective hadron. Light pions (left) show the largest nuclear suppression at the EIC. However, heavy flavor meson ratios (right) have to be measured to differentiate models of hadronization since they show a substantially different modification in \eA. (Figure is from \cite{Li:2021lbj}.)
002852698 8564_ $$82441228$$s39696$$uhttp://cds.cern.ch/record/2852698/files/lhcb_RpA.png$$y00041 LHCb Collaboration measurement of the nuclear modification factor of charge particles as a function of $p_T$ in different rapidity intervals for the forward region in $p+{\rm Pb}$ collisions at $\sqrt{S_{NN}}=5$~TeV at the LHC~\cite{LHCb:2021vww}, compared to state of the art CGC calculations~\cite{Shi:2021hwx}.
002852698 8564_ $$82441229$$s214829$$uhttp://cds.cern.ch/record/2852698/files/FFA_CEBAF_1.png$$y00063 Sketch of the CEBAF accelerator with the two highest energy arcs, Arc 9 and Arc A, replaced with a pair of FFA arcs (green). Figure from \cite{Arrington:2021alx}.
002852698 8564_ $$82441230$$s14460$$uhttp://cds.cern.ch/record/2852698/files/h-h_eA.png$$y00070 Left: Schematic illustration of the probe resolution, $Q^2$, versus $x$, indicating regions of non-perturbative (band at the bottom) and perturbative QCD (everything above the non-perturbative region), including in the latter, low to high saturated parton density, and the transition region between them \cite{Accardi:2012qut}. The saturation region is shown in yellow. Right: A saturation model prediction of the hadron-hadron correlation function $C (\Delta \phi)$ to be measured in \ep \ and \eA \ collisions at EIC plotted as a function of the azimuthal angle $\Delta \phi$: the away side peak at $\Delta \phi = \pi$ decreases as one goes from \ep \ to \eA \ due to the increase in the saturation scale with $A$. The ranges of transverse momenta ($p_T$) and longitudinal momentum fractions ($z_h$) of the trigger and associated hadrons are specified on the plot. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441231$$s39978$$uhttp://cds.cern.ch/record/2852698/files/Collins_figure18_v2.png$$y00034 Collins asymmetry plotted for identified $\pi^{+}$ (blue) and $\pi^{-}$ (red) particles as a function of $j_T$ for two different hadron $z$ bins, in jets with $p_T > 9.9$ GeV/$c$ and $0 < \eta < 0.9$ in $p+p$ collisions at 200 GeV \cite{STAR:2022hqg}. Theoretical evaluations from \cite{Kang:2017btw} and \cite{DAlesio:2017bvu} are also shown.
002852698 8564_ $$82441232$$s815831$$uhttp://cds.cern.ch/record/2852698/files/EIC_Arial.png$$y00074 Planned EIC accelerator. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441233$$s42179$$uhttp://cds.cern.ch/record/2852698/files/prex2_baryonDensity_v3.png$$y00077 Left: $\epb$ weak and baryon densities from the combined PREX datasets, with uncertainties shaded. The charge density is also shown~\cite{PREX:2021umo}. Right: Difference between the charge and weak form factors of $\eca$ (CREX) versus that of $\epb$ (PREX-2) at their respective momentum transfers. The blue (red) data point shows the PREX-2 (CREX) measurements. The ellipses are joint PREX-2 and CREX 67\% and 90\% probability contours. The gray circles (magenta diamonds) are a range of relativistic (non-relativistic) density functional models~\cite{CREX:2022kgg}.
002852698 8564_ $$82441234$$s21313$$uhttp://cds.cern.ch/record/2852698/files/alice_run34_bqhadronization.png$$y00050 Projection for LHC Run 3 and 4 for $\Lambda_b/B^+$ (right) as a function of transverse momentum from ALICE. Fig. is from Ref.~\cite{Citron:2018lsq}.
002852698 8564_ $$82441235$$s102107$$uhttp://cds.cern.ch/record/2852698/files/x-q2-epeA_combo_ExSum_mod.png$$y00075 Left: The $x$-$Q^{2}$ range covered by the EIC (yellow) in comparison with past and existing polarized $e/\mu$+$p$ experiments at CERN, DESY, JLab and SLAC, and \pp\ experiments at RHIC. Right: The $x$-$Q^{2}$ range for \eA\ collisions for ions heavier than iron (yellow) compared to existing world data. Figure from~\cite{EIC-WP-2023LRP}.
002852698 8564_ $$82441236$$s51440$$uhttp://cds.cern.ch/record/2852698/files/PVDIS_d_u_BoNUS_SK_crop.png$$y00057 Projected impact of the SoLID program on: (left) the $d$ vs. $u$ tensor charge from SIDIS measurements; and (right) the PDF ratio $d/u$ from PVDIS proton measurement. See~\cite{JeffersonLabSoLID:2022iod} for details.
002852698 8564_ $$82441237$$s39158$$uhttp://cds.cern.ch/record/2852698/files/GlueXJpsi_jjd.png$$y00035 Results on $J/\psi$ photoproduction cross section as a function of beam energy from the JLab GlueX experiment~\cite{Ali:2019lzf}, compared to the JPAC model~\cite{HillerBlin:2016odx} including LHCb--motivated pentaquark resonances with hypothetical $J/\psi \, p$ branching ratios in italics.
002852698 8564_ $$82531433$$s12764122$$uhttp://cds.cern.ch/record/2852698/files/Publication.pdf$$yFulltext
002852698 960__ $$a13
002852698 980__ $$aConferencePaper
002852698 980__ $$aARTICLE